998 resultados para ion association


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ion transport in a recently demonstrated promising soft matter solid plastic-polymer electrolyte is discussed here in the context of solvent dynamics and ion association. The plastic-polymer composite electrolytes display liquid-like ionic conductivity in the solid state,compliable mechanical strength (similar to 1 MPa), and wide electrochemical voltage stability (>= 5 V). Polyacrylonitrile (PAN) dispersed in lithium perchlorate (LiClO4)-succinonitrile (SN) was chosen as the model system for the study (abbreviated LiClO4-SN:PAN). Systematic observation of various mid-infrared isomer and ion association bands as a function of temperature and polyme concentration shows an effective increase in trans conformer concentration along with free Li+ ion concentration. This strongly supports the view that enhancement in LiClO4-SN:PAN ionic conductivity over the neat plastic electrolyte (LiClO4-SN) is due to both increase in charge mobility and concentration. The ionic conductivity and infrared spectroscopy studies are supported by Brillouin light scattering. For the LiClO4-SN:PAN composites, a peak at 17 GHz was observed in addition to the normal trans-gauche isomerism (as in neat SN) at 12 GHz. The fast process is attributed to increased dynamics of those SN molecules whose energy barrier of transition from gauche to trans has reduced under influences induced by the changes in temperature and polymer concentration. The observations from ionic conductivity, spectroscopy, and light scattering studies were further supplemented by temperature dependent nuclear magnetic resonance H-1 and Li-7 line width measurements.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using a molal conductance method, ion solvation and ion association in polytriethylene glycol dimethacrylate (PTREGD)-LiClO4 gel electrolytes with amorphous ethylene oxide-co-propylene oxide (EO-co-PO, <(M)over bar (n)>, = 1750) as the plasticizer were investigated. It was found that the fraction of solute existing as single ions (alpha(i)) and ion pairs (alpha(p)) decreases, while that of triple ions (alpha(t)) increases linearly with increasing salt concentration. The dependence of these fractions on molecular weight of plasticizer was also examined. It was shown that alpha(i) and alpha(t) increase and alpha(p) decreases with increasing molecular weight. The result of temperature dependence of these fractions was very interesting: when the temperature is lower than 55 degrees C, alpha(i) increases while alpha(p) and alpha(t) decrease with increasing temperature; however, when the temperature is higher than 55 degrees C, the reverse is true.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ion salvation and ion association in polytriethylene glycol dimethacrylate (PTREGD)-LiClO4 gel-type polymer electrolytes were investigated. It was found that the fraction of solute existing as single ions (alpha(i)) decreases and that of triple ions (alpha(i)) increases linearly with increasing LiClO4 concentration, while for ion pairs, as the salt concentration increases, its fraction (alpha(p)) increases first and then falls down. The findings can be rationalized by the fact that the ionic conductance of the polymer electrolyte may be mainly contributed by triple ions and higher ionic aggregates with unequal numbers of positive and negative charges in the salt concentration range of practical significance, i.e. in the range of 0.5-1.5 mol/l. The temperature dependence of these fractions was also examined. In the case of tetraethylene glycol as the solvent, alpha(i) and alpha(p) increase as the temperature is raised, but alpha(t) decreases as the temperature increases from 25 degrees C to 85 degrees C. It seems that the increase of alpha(i) and alpha(p) results from the redissociation of triple ions at higher temperature, The same changing trend of those fractions is also observed when PEG(400) is used as the solvent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mixtures of room temperature ionic liquids (IL) with neutral organic molecules provide a valuable testing ground to investigate the interplay of the ionic and molecular-dipolar state in dense Coulomb systems at near ambient conditions. In the present study, the viscosity eta and the ionic conductivity a of 1-n-butyl-3-methylimidazolium hexafluorophosphate ([bmim][PF6])/naphthalene mixtures at T = 80 degrees C have been measured at 10 stoichiometries spanning the composition range from pure naphthalene to pure [bmim][PF6]. The viscosity grows nearly monotonically with increasing IL mole fraction (x), whereas the conductivity per ion displays a clear peak at x approximate to 15%. The origin of this maximum has been investigated using molecular dynamics simulations based on a classical force field. Snapshots of the simulated samples show that the conductivity maximum is due to the gradual transition in the IL component from an ionic state at high x to a dipolar fluid made of neutral ion pairs at low x. At concentrations x <0.20 the ion pairs condense into molecular-thin filaments bound by dipolar forces and extending in between nanometric droplets of IL. These results are confirmed and complemented by the computation of dynamic and transport properties in [bmim][PF6]/naphthalene mixtures at low IL concentration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The ion association behaviour observed in our earlier studies of a polyether electrolyte system at elevated temperatures, was reminiscent of the molar conductivity behaviour typical of low dielectric constant systems. Further investigation of this relationship has led to some suggestions about the types of ionic species present in the polymer electrolyte systems. FT-IR spectroscopy has been used in this work to contrast ion association in an amorphous polyether electrolyte with two liquid electrolytes, N,N-dimethyl-formamide and tetraethylenegylcol dimethylether, containing lithium trifluoromethan sulfonate.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

FT-IR spectroscopy has been utilized to monitor ion association in plasticized solid polymer electrolytes (SPEs). The SPEs were prepared from a random copolymer of ethylene oxide (EO) and propylene oxide (PO) and the salt lithium trifluoromethanesulfonate (lithium triflate, LiTf). Tetraethylene glycol dimethyl ether (tetraglyme) and N,N‘-dimethylformamide (DMF) were chosen as model plasticizers. Despite having a similar dielectric constant to that of the polymer host, ε ~ 5, the incorporation of tetraglyme into the SPEs resulted in increased ion association. The addition of a higher dielectric constant solvent , DMF, ε = 36.7, resulted in decreased ion association in the SPE. The effects of salt concentration (0.05−1.25 mol dm-3) and temperature (25−100 °C) upon ion association in SPEs were also investigated. At low salt concentrations, ion association was found to increase with temperature, however, at 1.25 mol dm-3 the temperature dependence of ion association was dominated by concentration effects. There appears to be a maximum in the fraction of “free” ions at a LiCF3SO3 concentration of 0.4 mol dm-3, preceded by a minimum at approximately 0.2 mol dm-3, consistent with the molar conductivity behavior previously observed in these electrolytes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ion association in plasticised solid polymer electrolytes (SPEs) has been monitored using FT-IR spectroscopy. The SPEs were prepared from a random co-polymer of ethylene oxide (EO) and propylene oxide (PO) and the salt lithium trifluoromethane sulfonate (lithium triflate, LiTf). Tetraethylene glycol dimethylether (tetraglyme, ε˜5) and N,N'-dimethyl formamide (DMF, ε = 36.7) were chosen as model plasticisers. Decreased ion association resulted from plasticization with DMF, indicating that the addition of a higher dielectric constant solvent increases the fraction of dissociated ions in the SPE. The incorporation of tetraglyme into these SPEs results in increased ion association, despite the similar dielectric constants of the plasticiser and polymer host. The effects of salt concentration (0.05–1.25 mol dm− 3 solvent) upon ion association in SPEs was also investigated. There appears to be a minimum in the number of “free” ions at a LiTf concentration of 0.2 mol dm− 3 solvent followed by a maximum at approximately 0.4 mol dm− 3 solvent, consistent with the molar conductivity behaviour previously observed in these electrolytes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tetraglyme (TG) and the recently developed trimethylsilyl capped analogue (1NM3) when used as additives in a N-methyl-N-propylpyrrolidinium bis(trifluoromethylsulfonyl) amide [C3mpyr][NTf2]/0.65 M LiNTf2 electrolyte have been shown to dramatically enhance the transport properties of this electrolyte. In fact, at a concentration of 20 mol % tetraglyme (leading to a ratio of ~1:1 ether molecule per lithium ion), viscosity, conductivity, and the diffusion coefficients of the C3mpyr+ and NTf2 are practically reinstated to the values observed in the absence of lithium, thereby negating the structuring effects of the lithium ion. The 7Li T1 relaxation times also indicate that these additives strongly interact with the lithium ions. Furthermore, although TG has twice the viscosity of 1NM3, the greatest improvement in transport properties was observed for TG.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Ion transport mechanism in lithium perchlorate (LiClO4)-succinonitrile (SN), a prototype of plastic crystalline soft matter electrolyte is discussed in the context of solvent configurational isomerism and ion solvation. Contributions of both solvent configurational isomerism and ion solvation are reflected in the activation energy for ion conduction in 0-1 M LiClO4-SN samples. Activation energy due to solvent configurational changes, that is, trans-gauche isomerism is observed to be a function of salt content and decreases in presence of salt (except at high salt concentrations, e.g. 1 M LiClO4-SN). The remnant contribution to activation energy is attributed to ion-association. The X-ray diffraction of single crystals obtained using in situ cryo-crystallography confirms directly the observations of the ionic conductivity measurements. Fourier transform infrared spectroscopy and NMR line width measurements provide additional support to our proposition of ion transport in the prototype plastic crystalline electrolyte.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Important issues of water and thermal history affecting ion transport in a representative plastic crystalline lithium salt electrolyte: succinonitrile (SN)-lithium perchlorate (LiClO4) are discussed here. Ionic conductivity of electrolytes with high lithium salt amounts (similar to 1 M) in SN at a particular temperature is known to be influenced both by the trans-gauche isomerism and ion association (solvation), the two most important intrinsic parameters of the plastic solvent. In the present study both water and thermal history influence SN and result in enhancement of ionic conductivity of 1 M LiClO4-SN electrolyte. Systematic observations reveal that the presence of water in varying amounts promote ion-pair dissociation in the electrolyte. While trace amounts (approximate to 1-15 ppm) do not affect the trans-gauche isomerism of SN, the presence of water in large amounts (approximate to 5500 ppm) submerges the plasticity of SN. Subjugating the electrolyte to different thermal protocol resulted in enhancement of trans concentration only. This is an interesting observation as it demonstrates a simple and effective procedure involving utilization of an optimized set of external parameters to decouple solvation from trans-gauche isomerism. Observations from the ionic conductivity of various samples were accounted by changes in signature isomer and ion-association bands in the mid-IR regime and also from plastic to normal crystal transition temperature peak obtained from thermal studies. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The molten salts, 1-methyl,3-ethylimidazolium trifluoromethanesulfonate (triflate salt, MeEtImTf) and 1-methyl,3-ethylimidazolium bis(trifluoromethanesulfonimide) (imide salt, MeEtImNTf2) are colourless ionic liquids with conductivities of the order of 10−2 S cm−1 at room temperature. DSC measurements revealed subambient melting and glass transition temperatures. Analysis of the anion and cation diffusion coefficients suggested that the cation was the dominant charge carrier and that the motion was largely independent of the anion. Haven ratios (HRs) of 1 and 1.6 were determined for the imide and triflate salts, respectively, at 30°C (303 K). Values greater than one imply some degree of ionic association, suggesting that aggregation is present in the triflate salt. Mixing of the salts to form binary systems resulted in enhanced conductivities which deviated from a simple law of mixtures. Thermal analysis showed no evidence of a melting point with only a glass transition observed. Corresponding diffusion measurements for the binaries appeared to show a weighted average of the diffusion coefficients of the pure components. The increased conductivity can be attributed to an increase in the number of charge carriers as a result of decreased ion association in the binary.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Ionic liquids comprised of tetradecyltrihexyl- and tetrabutyl- phosphonium cations paired with chloride or sulfonyl amide anions exhibit properties that reflect strong ion association, including comparatively low viscosity as well as a degree of volatility, and hence exemplify an interesting intermediate state between true ionic and true molecular liquids.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

© The Royal Society of Chemistry. Solid-state polymer electrolytes, as an alternative to traditional liquid electrolytes, have been intensively investigated for energy conversion and storage devices. The transport rate of single ions is the key to their high performance. For application in emerging sodium batteries, we have developed three dual-cation polymeric ionomers, which contain bulky tetraalkylammonium ions in addition to the sodium ion. The sizes and relative contents of the ammonium ions vary relative to the sodium ion contents. Comparative studies of ion dynamics, thermal properties, phase behaviours and ionic conductivities were carried out, taking advantage of various spectroscopic and thermal chemistry methods. The ion conductivities of the ionomers are greatly enhanced by the introduction of bulky counterions, as a result of the additional free volume and decreased sodium ion association. Raman spectroscopy and thermal analysis as well as the solid-state nuclear magnetic resonance studies are used to probe the conductivity behaviour.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Temperature dependent Brillouin scattering studies have been performed to ascertain the influence of solvent dynamics on ion-transport in succinonitrile-lithium salt plastic crystalline electrolytes. Though very rarely employed, we observe that Brillouin spectroscopy is an invaluable tool for investigation of solvent dynamics. Analysis of various acoustic (long wavelength) phonon modes observed in the Brillouin scattering spectra reveal the influence of trans-gauche isomerism and as well as ion-association effects on ion transport. Although pristine SN and dilute SN-LiClO(4) samples show only the bulk longitudinal-acoustic (LA) mode, concentrated SN-LiClO(4) (similar to 0.3-1 M) electrolytes display both the bulk LA mode as well as salt induced brillouin modes at ambient temperature. The appearance of more than one brillouin mode is attributed to the scattering of light from regions with different compressibilities (''compactness''). Correspondingly, these modes show a large decrease in the full width at half-maximum (abbreviated as nu(f)) as the temperature decreases. Anomalous temperature dependent behavior of nu(f) with addition of salt could be attributed to the presence of disorder or strong coupling with a neighbor. The shape of the spectrum was evaluated using a Lorentzian and Fano line shape function depending on the nature and behavior of the Brillouin modes.