996 resultados para ion regulation


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In May 2010, Brazil joined the roll of nations with a National Broadband Plan. The Decree nº 7,175/2010 had implemented a program that aimed to offer 30 million permanent broadband accesses until 2014 and established its main goals, such as accelerating economic and social development, promoting digital inclusion, reducing social and regional inequalities, promoting a generation of employment and income, and expanding electronic government services. However, the broadband access in Brazil is limited, expensive, and centralized in the main urban centres. Despite the fast growth in the past years due to mobile internet access, the market is still concentrated in the local incumbent operators that currently provide mobile services, landline services and Paid-TV services, resulting in a high level of market verticalization. The following dissertation investigates the constraint of broadband access development, the dynamics, the actors, and the factors that have delayed the roll-out of broadband services in Brazil. The study also promotes reflections about the challenge posed by the media, by costumers associations and by public opinion as critical observers of the policy making process. This research examines on the political influence towards regulation to determine the way policy will benefit interest groups. Many interviews have been conducted in order to understand the forces which have been acting in the telecommunications in Brazil after privatization, in 1998. This study aims to provide a better understanding of telecommunications regulatory process in Brazil, in order to help the country finding an adequate policy which can lead to the implementation of a broadband roll-out. The universal broadband access is the only way to benefit the whole society in Brazil with a satisfactory level of education and create more jobs and economic development regarding the plenty use of Information and Communications Technology (ICT).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

[ENG]Aiming at an integrated and mechanistic view of the early biological effects of selected metals in the marine sentinel organism Mytilus galloprovincialis, we exposed mussels for 48 hours to 50, 100 and 200 nM solutions of equimolar Cd, Cu and Hg salts and measured cytological and molecular biomarkers in parallel. Focusing on the mussel gills, first target of toxic water contaminants and actively proliferating tissue, we detected significant dose-related increases of cells with micronuclei and other nuclear abnormalities in the treated mussels, with differences in the bioconcentration of the three metals determined in the mussel flesh by atomic absorption spectrometry. Gene expression profiles, determined in the same individual gills in parallel, revealed some transcriptional changes at the 50 nM dose, and substantial increases of differentially expressed genes at the 100 and 200 nM doses, with roughly similar amounts of up- and down-regulated genes. The functional annotation of gill transcripts with consistent expression trends and significantly altered at least in one dose point disclosed the complexity of the induced cell response. The most evident transcriptional changes concerned protein synthesis and turnover, ion homeostasis, cell cycle regulation and apoptosis, and intracellular trafficking (transcript sequences denoting heat shock proteins, metal binding thioneins, sequestosome 1 and proteasome subunits, and GADD45 exemplify up-regulated genes while transcript sequences denoting actin, tubulins and the apoptosis inhibitor 1 exemplify down-regulated genes). Overall, nanomolar doses of co-occurring free metal ions have induced significant structural and functional changes in the mussel gills: the intensity of response to the stimulus measured in laboratory supports the additional validation of molecular markers of metal exposure to be used in Mussel Watch programs

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Over the last few decades, quantum chemistry has progressed through the development of computational methods based on modern digital computers. However, these methods can hardly fulfill the exponentially-growing resource requirements when applied to large quantum systems. As pointed out by Feynman, this restriction is intrinsic to all computational models based on classical physics. Recently, the rapid advancement of trapped-ion technologies has opened new possibilities for quantum control and quantum simulations. Here, we present an efficient toolkit that exploits both the internal and motional degrees of freedom of trapped ions for solving problems in quantum chemistry, including molecular electronic structure, molecular dynamics, and vibronic coupling. We focus on applications that go beyond the capacity of classical computers, but may be realizable on state-of-the-art trapped-ion systems. These results allow us to envision a new paradigm of quantum chemistry that shifts from the current transistor to a near-future trapped-ion-based technology.