15 resultados para invertors
Resumo:
This paper proposes a flying-capacitor-based chopper circuit for dc capacitor voltage equalization in diode-clamped multilevel inverters. Its important features are reduced voltage stress across the chopper switches, possible reduction in the chopper switching frequency, improved reliability, and ride-through capability enhancement. This topology is analyzed using three- and four-level flying-capacitor-based chopper circuit configurations. These configurations are different in capacitor and semiconductor device count and correspondingly reduce the device voltage stresses by half and one-third, respectively. The detailed working principles and control schemes for these circuits are presented. It is shown that, by preferentially selecting the available chopper switch states, the dc-link capacitor voltages can be efficiently equalized in addition to having tightly regulated flying-capacitor voltages around their references. The various operating modes of the chopper are described along with their preferential selection logic to achieve the desired performances. The performance of the proposed chopper and corresponding control schemes are confirmed through both simulation and experimental investigations.
Resumo:
This paper investigates the control of a HVDC link, fed from an AC source through a controlled rectifier and feeding an AC line through a controlled inverter. The overall objective is to maintain maximum possible link voltage at the inverter while regulating the link current. In this paper the practical feedback design issues are investigated with a view of obtaining simple, robust designs that are easy to evaluate for safety and operability. The investigations are applicable to back-to-back links used for frequency decoupling and to long DC lines. The design issues discussed include: (i) a review of overall system dynamics to establish the time scale of different feedback loops and to highlight feedback design issues; (ii) the concept of using the inverter firing angle control to regulate link current when the rectifier firing angle controller saturates; and (iii) the design issues for the individual controllers including robust design for varying line conditions and the trade-off between controller complexity and the reduction of nonlinearity and disturbance effects
Resumo:
The dc capacitors voltage unbalancing is the main technical drawback of a diode-clamped multilevel inverter (DCMLI), with more than three levels. A voltage-balancing circuit based on buck–boost chopper connected to the dc link of DCMLI is a reliable and robust solution to this problem. This study presents four different schemes for controlling the chopper circuit to achieve the capacitor voltages equalisation. These can be broadly categorised as single-pulse, multi-pulse and hysteresis band current control schemes. The single-pulse scheme does not involve faster switching actions but need the chopper devices to be rated for higher current. The chopper devices current rating can be kept limited by using the multi-pulse scheme but it involves faster switching actions and slower response. The hysteresis band current control scheme offers faster dynamics, lower current rating of the chopper devices and can nullify the initial voltage imbalance as well. However, it involves much faster switching actions which may not be feasible for some of its applications. Therefore depending on the system requirements and ratings, one of these schemes may be used. The performance and validity of the proposed schemes are confirmed through both simulation and experimental investigations on a prototype five-level diode-clamped inverter.
Resumo:
Grid connected photovoltaic (PV) inverters fall into three broad categories - central, string and module integrated converters (MICs). MICs offer many advantages in performance and flexibility, but are at a cost disadvantage. Two alternative novel approaches proposed by the author - cascaded dc-dc MICs and bypass dc-dc MICs - integrate a simple non-isolated intelligent dc-dc converter with each PV module to provide the advantages of dc-ac MICs at a lower cost. A suitable universal 150 W 5 A dc-dc converter design is presented based on two interleaved MOSFET half bridges. Testing shows zero voltage switching (ZVS) keeps losses under 1 W for bi-directional power flows up to 15 W between two adjacent 12 V PV modules for the bypass application, and efficiencies over 94% for most of the operational power range for the cascaded converter application. Based on the experimental results, potential optimizations to further reduce losses are discussed.
Resumo:
Bit-stream-based control, which uses one bit wide signals to control power electronics applications, is a new approach for controller design in power electronic systems. This study presents a novel family of three-phase space vector modulators, which are based on the bit-stream technique and suitable for three-phase inverter systems. Each of the proposed modulators simultaneously converts a two-phase reference to the three-phase domain and reduces switching frequencies to reasonable levels. The modulators do not require carrier oscillators, trigonometric functions or, in some cases, sector detectors. A complete three-phase modulator can be implemented in as few as 102 logic elements. The performance of the proposed modulators is compared through simulation and experimental testing of a 6 kW, three-phase DC-to-AC inverter. Subject to limits on the modulation index, the proposed modulators deliver spread-spectrum output currents with total harmonic distortion comparable to a standard carrier-based space vector pulse width modulator.
Resumo:
Modulation and control of a cascade multilevel static synchronous compensator (STATCOM) configuration to improve the quality of voltage generated by wind power systems are presented. The proposed STATCOM configuration needs only four dc-link capacitors and 24 switches to synthesise nine-level operation. In addition to that, switching losses are further reduced by splitting the voltage source inverter of the STATCOM into two units called the `bulk inverter` and the `conditioning inverter`. The high-power bulk inverter is operated at low frequency whereas the low-power conditioning inverter is operated at high frequency to suppress harmonics produced by the bulk inverter. Fluctuations at the point of common coupling voltage, caused by sudden wind changes, are suppressed by controlling reactive power of the STATCOM. Simulation and experimental results are presented to verify the efficacy of the proposed modulation and control techniques used in the STATCOM.
Resumo:
Battery/supercapacitor hybrid energy storage systems have been gaining popularity in electric vehicles due to their excellent power and energy performances. Conventional designs of such systems require interfacing dc-dc converters. These additional dc-dc converters increase power loss, complexity, weight and cost. Therefore, this paper proposes a new direct integration scheme for battery/supercapacitor hybrid energy storage systems using a double ended inverter system. This unique approach eliminates the need for interfacing converters and thus it is free from aforementioned drawbacks. Furthermore, the proposed system offers seven operating modes to improve the effective use of available energy in a typical drive cycle of a hybrid electric vehicle. Simulation results are presented to verify the efficacy of the proposed system and control techniques.
Resumo:
This paper presents a novel battery direct integration scheme for renewable energy systems. The idea is to replace ordinary capacitors of a three-level flying-capacitor inverter by three battery banks to alleviate power fluctuations in renewable generation. This approach eliminates the need for interfacing dc-dc converters and thus considerably improves the overall efficiency. However, the major problem with this approach is the uneven distribution of space vectors which is due to unavoidable unbalance in clamping voltages. A detailed analysis on the effects of this issue and a novel carrier based pulse width modulation method, which can generate undistorted currents even in the presence of unevenly distributed space vectors, are presented in this paper. A charge/discharge controller is also proposed for power sharing and state of charge balancing of battery banks. Simulation results are presented to verify the efficacy of the proposed system, modulation method and power sharing controller.
Resumo:
This paper presents a new direct integration scheme for supercapacitors that are used to mitigate short term power fluctuations in wind power systems. The idea is to replace ordinary capacitors of a 3-level flying capacitor inverter by supercapacitors and operate them under variable voltage conditions. This approach eliminates the need of interfacing dc-dc converters for supercapacitor integration and thus considerably improves the overall efficiency. However, the major problem of this unique system is the change of supercapacitor voltages. An analysis on the effects of these voltage variations are presented. A space vector modulation method, built from the scratch, is proposed to generate undistorted current even in the presence of dynamic changes in supercapacitor voltages. A supercapacitor voltage equalisation algorithm is also proposed. Furthermore, resistive behavior of supercapacitors at high frequencies and the need for a low pass filter are highlighted. Simulation results are presented to verify the efficacy of the proposed system in suppressing short term wind power fluctuations.
Resumo:
A Z-source inverter based grid-interface for a variable-speed wind turbine connected to a permanent magnet synchronous generator is proposed. A control system is designed to harvest maximum wind energy under varied wind conditions with the use of the permanent magnet synchronous generator, diode-rectifier and Z-source inverter. Control systems for speed regulation of the generator and for DC- and AC- sides of the Z-source inverter are investigated using computer simulations and laboratory experiments. Simulation and experimental results verify the efficacy of the proposed approach.
Resumo:
A high-frequency-link micro inverter is proposed with a front-end dual inductor push-pull converter and a grid-connected half-wave cycloconverter. Pulse width modulation is used to control the front-end converter and phase shift modulation is used at the back-end converter to obtain grid synchronized output current. A series resonant circuit and high-frequency transformer are used to interface the front-end and the back-end converters. The operation of the proposed micro-inverter in grid-connected mode is validated using MATLAB/Simpower simulation. Experimental results are provided to further validate the operation.
Resumo:
Este estudo pretende abordar os impactos que a multiculturalidade pode provocar nas relações comerciais, influenciando a qualidade das negociações e aproveitamento das oportunidades, bem como a realização de contratos mais inovadores e vantajosos para ambas as partes. Através do estudo do setor petrolífero no mundo e no Brasil e da identificação do alto grau de internacionalização desta indústria, procura-se verificar quais são as principais dificuldades que diferenças culturais podem criar na relação de confiança dos investidores estrangeiros sobre a estrutura e estilo de condução de negócios geridos por executivos brasileiros. Pretende-se verificar possíveis características específicas nas relações comerciais deste setor, observando o efeito que diferentes estilos, crenças, comportamentos e práticas venham exercer, e o grau de atenção e importância com que as empresas lidam com esta questão.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)