998 resultados para inversion method
Resumo:
This paper presents an inversion methodology through weighted least squares to obtain the electrical parameters for the soil of a typical mid-western region in Brazil using the model based in the formalism of the parabolic equations to calculate the electric field intensity received. To validate this methodology, the results of the radio signal measurement campaign conducted in six radial routes leaving the city of Brasilia, Federal District, where the transmitter was located, were used. The measurements were compared to computer simulations and, thus, the optimal values for the electric conductivity and relative permittivity for the soil of the region could be estimated. Finally, a quantitative analysis of these parameters was performed with the values found in the literature, which demonstrated the effectiveness of the proposed methodology.
Resumo:
The study of volcano deformation data can provide information on magma processes and help assess the potential for future eruptions. In employing inverse deformation modeling on these data, we attempt to characterize the geometry, location and volume/pressure change of a deformation source. Techniques currently used to model sheet intrusions (e.g., dikes and sills) often require significant a priori assumptions about source geometry and can require testing a large number of parameters. Moreover, surface deformations are a non-linear function of the source geometry and location. This requires the use of Monte Carlo inversion techniques which leads to long computation times. Recently, ‘displacement tomography’ models have been used to characterize magma reservoirs by inverting source deformation data for volume changes using a grid of point sources in the subsurface. The computations involved in these models are less intensive as no assumptions are made on the source geometry and location, and the relationship between the point sources and the surface deformation is linear. In this project, seeking a less computationally intensive technique for fracture sources, we tested if this displacement tomography method for reservoirs could be used for sheet intrusions. We began by simulating the opening of three synthetic dikes of known geometry and location using an established deformation model for fracture sources. We then sought to reproduce the displacements and volume changes undergone by the fractures using the sources employed in the tomography methodology. Results of this validation indicate the volumetric point sources are not appropriate for locating fracture sources, however they may provide useful qualitative information on volume changes occurring in the surrounding rock, and therefore indirectly indicate the source location.
Resumo:
This doctoral thesis focuses on ground-based measurements of stratospheric nitric acid (HNO3)concentrations obtained by means of the Ground-Based Millimeter-wave Spectrometer (GBMS). Pressure broadened HNO3 emission spectra are analyzed using a new inversion algorithm developed as part of this thesis work and the retrieved vertical profiles are extensively compared to satellite-based data. This comparison effort I carried out has a key role in establishing a long-term (1991-2010), global data record of stratospheric HNO3, with an expected impact on studies concerning ozone decline and recovery. The first part of this work is focused on the development of an ad hoc version of the Optimal Estimation Method (Rodgers, 2000) in order to retrieve HNO3 spectra observed by means of GBMS. I also performed a comparison between HNO3 vertical profiles retrieved with the OEM and those obtained with the old iterative Matrix Inversion method. Results show no significant differences in retrieved profiles and error estimates, with the OEM providing however additional information needed to better characterize the retrievals. A final section of this first part of the work is dedicated to a brief review on the application of the OEM to other trace gases observed by GBMS, namely O3 and N2O. The second part of this study deals with the validation of HNO3 profiles obtained with the new inversion method. The first step has been the validation of GBMS measurements of tropospheric opacity, which is a necessary tool in the calibration of any GBMS spectra. This was achieved by means of comparisons among correlative measurements of water vapor column content (or Precipitable Water Vapor, PWV) since, in the spectral region observed by GBMS, the tropospheric opacity is almost entirely due to water vapor absorption. In particular, I compared GBMS PWV measurements collected during the primary field campaign of the ECOWAR project (Bhawar et al., 2008) with simultaneous PWV observations obtained with Vaisala RS92k radiosondes, a Raman lidar, and an IR Fourier transform spectrometer. I found that GBMS PWV measurements are in good agreement with the other three data sets exhibiting a mean difference between observations of ~9%. After this initial validation, GBMS HNO3 retrievals have been compared to two sets of satellite data produced by the two NASA/JPL Microwave Limb Sounder (MLS) experiments (aboard the Upper Atmosphere Research Satellite (UARS) from 1991 to 1999, and on the Earth Observing System (EOS) Aura mission from 2004 to date). This part of my thesis is inserted in GOZCARDS (Global Ozone Chemistry and Related Trace gas Data Records for the Stratosphere), a multi-year project, aimed at developing a long-term data record of stratospheric constituents relevant to the issues of ozone decline and expected recovery. This data record will be based mainly on satellite-derived measurements but ground-based observations will be pivotal for assessing offsets between satellite data sets. Since the GBMS has been operated for more than 15 years, its nitric acid data record offers a unique opportunity for cross-calibrating HNO3 measurements from the two MLS experiments. I compare GBMS HNO3 measurements obtained from the Italian Alpine station of Testa Grigia (45.9° N, 7.7° E, elev. 3500 m), during the period February 2004 - March 2007, and from Thule Air Base, Greenland (76.5°N 68.8°W), during polar winter 2008/09, and Aura MLS observations. A similar intercomparison is made between UARS MLS HNO3 measurements with those carried out from the GBMS at South Pole, Antarctica (90°S), during the most part of 1993 and 1995. I assess systematic differences between GBMS and both UARS and Aura HNO3 data sets at seven potential temperature levels. Results show that, except for measurements carried out at Thule, ground based and satellite data sets are consistent within the errors, at all potential temperature levels.
Resumo:
Time-lapse geophysical monitoring and inversion are valuable tools in hydrogeology for monitoring changes in the subsurface due to natural and forced (tracer) dynamics. However, the resulting models may suffer from insufficient resolution, which leads to underestimated variability and poor mass recovery. Structural joint inversion using cross-gradient constraints can provide higher-resolution models compared with individual inversions and we present the first application to time-lapse data. The results from a synthetic and field vadose zone water tracer injection experiment show that joint 3-D time-lapse inversion of crosshole electrical resistance tomography (ERT) and ground penetrating radar (GPR) traveltime data significantly improve the imaged characteristics of the point injected plume, such as lateral spreading and center of mass, as well as the overall consistency between models. The joint inversion method appears to work well for cases when one hydrological state variable (in this case moisture content) controls the time-lapse response of both geophysical methods. Citation: Doetsch, J., N. Linde, and A. Binley (2010), Structural joint inversion of time-lapse crosshole ERT and GPR traveltime data, Geophys. Res. Lett., 37, L24404, doi: 10.1029/2010GL045482.
Resumo:
Six parameters uniquely describe the orbit of a body about the Sun. Given these parameters, it is possible to make predictions of the body's position by solving its equation of motion. The parameters cannot be directly measured, so they must be inferred indirectly by an inversion method which uses measurements of other quantities in combination with the equation of motion. Inverse techniques are valuable tools in many applications where only noisy, incomplete, and indirect observations are available for estimating parameter values. The methodology of the approach is introduced and the Kepler problem is used as a real-world example. (C) 2003 American Association of Physics Teachers.
Resumo:
The dynamics of a polar low are examined using a piecewise potential vorticity (PV) inversion method. In previous studies of this and other polar lows, structural evolution has been described in terms of regions of anomalous PV. In this study the relative importance of different PV anomalies and the interactions between them have been quantified using PV diagnostics. The intensification of the polar low occurred in three stages (in contrast to previous studies of polar lows that have only identified two stages). The dynamical characteristics of stages one and two are consistent with the proposed type C cyclogenesis mechanism. A diabatically-generated lower-tropospheric PV anomaly dominated intensification after initial triggering by a positive upper-level PV anomaly. A phase tilt between the upper and lower levels was maintained through retardation of the positive upper-level anomaly by the effects of latent heat release. Stage three was a period of growth dominated by wind-induced surface heat exchange (WISHE), which contributed at least 18% to the amplitude of the mature surface polar low.
Resumo:
During my PhD, starting from the original formulations proposed by Bertrand et al., 2000 and Emolo & Zollo 2005, I developed inversion methods and applied then at different earthquakes. In particular large efforts have been devoted to the study of the model resolution and to the estimation of the model parameter errors. To study the source kinematic characteristics of the Christchurch earthquake we performed a joint inversion of strong-motion, GPS and InSAR data using a non-linear inversion method. Considering the complexity highlighted by superficial deformation data, we adopted a fault model consisting of two partially overlapping segments, with dimensions 15x11 and 7x7 km2, having different faulting styles. This two-fault model allows to better reconstruct the complex shape of the superficial deformation data. The total seismic moment resulting from the joint inversion is 3.0x1025 dyne.cm (Mw = 6.2) with an average rupture velocity of 2.0 km/s. Errors associated with the kinematic model have been estimated of around 20-30 %. The 2009 Aquila sequence was characterized by an intense aftershocks sequence that lasted several months. In this study we applied an inversion method that assumes as data the apparent Source Time Functions (aSTFs), to a Mw 4.0 aftershock of the Aquila sequence. The estimation of aSTFs was obtained using the deconvolution method proposed by Vallée et al., 2004. The inversion results show a heterogeneous slip distribution, characterized by two main slip patches located NW of the hypocenter, and a variable rupture velocity distribution (mean value of 2.5 km/s), showing a rupture front acceleration in between the two high slip zones. Errors of about 20% characterize the final estimated parameters.
Resumo:
Nanocomposite membranes containing polysulfone (PSI) and sodium montmorillonite from Wyoming (MMT) were prepared by a combination of solution dispersion and the immersion step of the wet-phase inversion method. The purpose was to study the MMT addition with contents of 0.5 and 3.0 mass% MMT in the preparation of nanocomposite membranes by means of morphology, thermal, mechanical and hydrophilic properties of nanocomposite membranes and to compare these properties to the pure PSf membrane ones. Small-angle X-ray diffraction patterns revealed the formation of intercalated clay mineral layers in the PSf matrix and TEM images also presented an exfoliated structure. A good dispersion of the clay mineral particles was detected by SEM images. Tensile tests showed that both elongation at break and tensile strength of the nanocomposites were improved in comparison to the pristine PSf. The thermal stability of the nanocomposite membranes, evaluated by onset and final temperatures of degradation, was also enhanced. The hydrophilicity of the nanocomposite membranes, determined by water contact angle measurements, was higher; therefore, the MMT addition was useful to produce more hydrophilic membranes. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Mestrado Integrado em Engenharia Química e Bioquímica
Resumo:
Dissertação apresentada para a obtenção do grau de Doutor em Engenharia Química, especialidade Engenharia da Reacção Química, pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia
Resumo:
Cellulose acetate (CA)-silver (Ag) nanocomposite asymmetric membranes were prepared via the wet-phase inversion method by dispersing polyvinylpirrolydone-protected Ag nanoparticles in the membrane casting solutions of different compositions. Silver nanoparticles were synthesized ex situ and added to the casting solution as a concentrated aqueous colloidal dispersion. The effects of the dispersion addition on the structure and on the selective permeation properties of the membranes were studied by comparing the nanocomposites with the silver-free materials. The casting solution composition played an important role in the adequate dispersion of the silver nanoparticles in the membrane. Incorporation of nanoscale silver and the final silver content resulted in structural changes leading to an increase in the hydraulic permeability and molecular weight cut-off of the nanocomposite membranes. (c) 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015, 132, 41796.
Resumo:
Mestrado integrado em Engenharia Química e Bioquímica
Resumo:
Dissertação para obtenção do Grau de Doutor em Química Sustentável
Resumo:
The main objective of this work was the development of polymeric structures, gel and films, generated from the dissolution of the Chitin-Glucan Complex (CGC) in biocompatible ionic liquids for biomedical applications. Similar as chitin, CGC is only soluble in some special solvents which are toxic and corrosive. Due to this fact and the urgent development of biomedical applications, the need to use biocompatible ionic liquids to dissolve the CGC is indispensable. For the dissolution of CGC, the biocompatible ionic liquid used was Choline acetate. Two different CGC’s, KiOnutrime from KitoZyme and biologically produced CGC from Faculdade de Ciencias e Tecnologia (FCT) - Universidade Nova de Lisboa, were characterized in order to develop biocompatible wound dressing materials. The similar result is shown in term of the ratio of chitin:glucan, which is 1:1.72 for CGC-FCT and 1:1.69 for CGC-Commercial. For the analysis of metal element content, water and inorganic salts content and protein content, both polymers showed some discrepancies, where the content in CGC-FCT is always higher compared to the commercial one. The different characterization results between CGC-FCT and CGC-Commercial could be addressed to differences in the purification method, and the difference of its original strain yeast, whereas CGC-FCT is derived from P.pastoris and the commercial CGC is from A.niger. This work also investigated the effect of biopolymers, temperature dissolution, non-solvent composition on the characteristics of generated polymeric structure with biocompatible ionic liquid. The films were prepared by casting a polymer mixture, immersion in a non-solvent, followed by drying at ambient temperature. Three different non-solvents were tested in phase inversion method, i.e. water, methanol, and glycerol. The results indicate that the composition of non-solvent in the coagulation bath has great influence in generated polymeric structure. Water was found to be the best coagulant for producing a CGC polymeric film structure. The characterizations that have been done include the analysis of viscosity and viscoelasticity measurement, as well as sugar composition in the membrane and total sugar that was released during the phase inversion method. The rheology test showed that both polymer mixtures exhibit a non- Newtonian shear thinning behaviour. Where the viscosity and viscoelasticity test reveal that CGCFCT mixture has a typical behaviour of a viscous solution with entangled polymer chains and CGCCommercial mixture has true gel behaviour. The experimental results show us that the generated CGC solution from choline acetate could be used to develop both polymeric film structure and gel. The generated structures are thermally stable at 100° C, and are hydrophilic. The produced films have dense structure and mechanical stabilities against puncture up to 60 kPa.
Resumo:
The main objective of this thesis was the development of polymeric structures from the dissolution of FucoPol, a bacterial exopolysaccharide (EPS), in a biocompatible ionic liquid, choline acetate. The FucoPol was produced by the bacteria Enterobacter A47 using glycerol as carbon source at controlled temperature and pH (30ºC and 7, respectively). At the end of 3 days it was produced 7 g/L of FucoPol. The net yield of Fucopol in glycerol (YP/S) was 0.22 g/g and the maximum productivity 2.37 g/L.d This polymer was characterized about its composition in sugars and acyl groups (by High-Performance Liquid Chromatography - HPLC), containing fucose (35 % mol), galactose (21 % mol), glucose (29 % mol), rhamnose (3% mol) and glucuronic acid (12% mol) as well as acetate (14.28 % mol), pyruvate (2.15 % mol) and succinate (1.80 % mol). Its content of water and ash was 15% p/p and 2% p/p, respectively, and the chemical bonds (determined by Infrared Spectroscopy - FT-IR) are consistent to the literature reports. However, due to limitations in Differential Scanning Calorimetry (DSC) equipment it was not possible to determine the glass transition temperature. In turn, the ionic liquid showed the typical behavior of a Newtonian fluid, glass transition temperature (determined by DSC) -98.03ºC and density 1.1031 g/cm3. The study of chemical bonds by FT-IR showed that amount of water (8.80%) influenced the visualization of the bands predicted to in view of their chemical structure. After the dissolution of the FucoPol in the ionic liquid at different temperatures (50, 60, 80 and 100 ° C) it was promoted the removal of this by the phase inversion method using deionized water as a solvent, followed by drying in an oven at 70 ° C. The mixtures before and after the phase inversion method were characterized through the studies mentioned above. In order to explore possible application field’s biocompatibility assays and collage on balsa wood tests were performed. It was found that the process of washing with water by the phase inversion method was not totally effective in removing the biocompatible ionic liquid, since all FucoPol – IL mixtures still contained ionic liquid in their composition as can be seen by the DSC results and FT-IR. In addition, washing the mixtures with water significantly altered the composition of FucoPol. However, these mixtures, that developed a viscous behavior typical of a non-Newtonian fluid (shear-thinning), have the potential to be applied in the biomedical field as well as biological glues.