992 resultados para introduced fish
Resumo:
1. The ability of many introduced fish species to thrive in degraded aquatic habitats and their potential to impact on aquatic ecosystem structure and function suggest that introduced fish may represent both a symptom and a cause of decline in river health and the integrity of native aquatic communities. 2. The varying sensitivities of many commonly introduced fish species to degraded stream conditions, the mechanism and reason for their introduction and the differential susceptibility of local stream habitats to invasion because of the environmental and biological characteristics of the receiving water body, are all confounding factors that may obscure the interpretation of patterns of introduced fish species distribution and abundance and therefore their reliability as indicators of river health. 3. In the present study, we address the question of whether alien fish (i.e. those species introduced from other countries) are a reliable indicator of the health of streams and rivers in south-eastern Queensland, Australia. We examine the relationships of alien fish species distributions and indices of abundance and biomass with the natural environmental features, the biotic characteristics of the local native fish assemblages and indicators of anthropogenic disturbance at a large number of sites subject to varying sources and intensities of human impact. 4. Alien fish species were found to be widespread and often abundant in south-eastern Queensland rivers and streams, and the five species collected were considered to be relatively tolerant to river degradation, making them good candidate indicators of river health. Variation in alien species indices was unrelated to the size of the study sites, the sampling effort expended or natural environmental gradients. The biological resistance of the native fish fauna was not concluded to be an important factor mediating invasion success by alien species. Variation in alien fish indices was, however, strongly related to indicators of disturbance intensity describing local in-stream habitat and riparian degradation, water quality and surrounding land use, particularly the amount of urban development in the catchment. 5. Potential confounding factors that may influence the likelihood of introduction and successful establishment of an alien species and the implications of these factors for river bioassessment are discussed. We conclude that the potentially strong impact that many alien fish species can have on the biological integrity of natural aquatic ecosystems, together with their potential to be used as an initial basis to find out other forms of human disturbance impacts, suggest that some alien species (particularly species from the family Poeciliidae) can represent a reliable 'first cut' indicator of river health.
Resumo:
The red-finned blue-eye (Scaturiginichthys vermeilipinnis) is endemic to a single complex of springs emanating from the Great Artesian Basin, Australia. The species has been recorded as naturally occurring in eight separate very shallow (generally <20 mm) springs, with a combined wetland area of ~0.3 ha. Since its discovery in 1990, five red-finned blue-eye (RFBE) populations have been lost and subsequent colonisation has occurred in two spring wetlands. Current population size is estimated at <3000 individuals. Artesian bores have reduced aquifer pressure, standing water levels and spring-flows in the district. There is evidence of spatial separation within the spring pools where RFBE and the introduced fish gambusia (Gambusia holbrooki) co-occur, although both species are forced together when seasonal extremes affect spring size and water temperature. Gambusia was present in four of the five springs where RFBE populations have been lost. Four out of the five remaining subpopulations of RFBE are Gambusia free. Circumstantial evidence suggests that gambusia is a major threat to red-finned blue-eyes. The impact of Gambusia is probably exacerbated by domestic stock (cattle and sheep), feral goats and pigs that utilise the springs and can negatively affect water quality and flow patterns. Three attempts to translocate RFBE to apparently suitable springs elsewhere within the complex have failed. Opportunities to mitigate threats are discussed, along with directions for future research to improve management of this extremely threatened fish and habitat.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A molecular phylogenetic analysis based on mitochondrial 16S ribosomal DNA and Control Region sequences from native and introduced populations was undertaken, in order to characterize the introduction of Cichla (peacock bass or tucunaré) species in Brazil. Mitochondrial DNA haplotypes found in introduced fish from Minas Gerais state (southeastern Brazil) clustered only with those from native species of the Tocantins River (Cichla piquiti and C. kelberi), thereby suggesting a single or, at most, few translocation acts in this area, even though with fish from the same source-population. Our study contributes to an understanding of the introduction of Cichla in regions of Brazil outside the Amazon basin, and adds phylogenetic data to the recently describe Cichla species, endemic from the Tocantins-Araguaia basin.
Resumo:
Fourteen species of indigenous fish and three species of introduced fish commonly used for food are present in Parakrama Samudra and Minneriya Wewa. Commercial fishing is done throughout the year in these two lakes by gill nets, shore-seines ("Ma-del" nets) and cast nets. From records of fish landings maintained from 1957 it is seen that the production of fish at Parakrama Samudra has increased from 41 pounds per acre per annum in 1957 to 117 pounds per acre per annum in 1962 and at Minneriya Wewa from 11 pounds per acre per annum in 1957 to 118 pounds per acre per annum in 1962. Tilapia mossambica formed the chief constituent of the catch at both these lakes and it was due to this fish that the commercial fisheries at both these places were successful. It is recommended that fishing effort be further increased in both these lakes and records be kept to note any tendency towards over-exploitation.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
While many myxozoan parasites produce asymptomatic infections in fish hosts, several species cause diseases whose patterns of prevalence and pathogenicity are highly dependent on host and environmental factors. This chapter reviews how these factors influence pathogenicity and disease prevalence. Influential host factors include age, size and nutritional state. There is also strong evidence for host strains that vary in resistance to infection and that there is a genetic basis for resistance. A lack of co-evolutionary processes appears to generally underly the devastating impacts of diseases caused by myxozoans when introduced fish are exposed to novel parasites (e.g. PKD in rainbow trout in Europe) or when native fish are exposed to an introduced parasite (e.g. whirling disease in North America). Most available information on abiotic factors relates to water temperature, which has been shown to play a crucial role in several host parasite systems (e.g. whirling disease, PKD) and is therefore of concern in view of global warming, fish health and food sustainability. Eutrophication may also influence disease development. Abiotic factors may also drive fish disease via their impact on parasite development in invertebrate hosts.
Resumo:
Fish species diversity in Lake Nabugabo, Uganda, has declined following establishment of the introduced fish species in the lake. Most of the native fish species have disappeared and the lake is now dominated by the introduced Nile perch, Lates niloticus and the Nile tilapia Oreochromis niloticus. The dominant native fish species include Synodontis afrofischeri, Schilbe intermedius, Rastrineobola argentea and Brycinussadleri. Some of the native fish species that have disappeared from Lake Nabugabo were reported to occur in lakes Kayugi and Kayanja, which are adjacent to Lake Nabugabo but separated from it by extensive papyrus swamps. The Nabugabo lakes are satellite water bodies in the Lake Victoria basin, which is known to have experienced fish species changes due to the introduction of the Nile perch Lates niloticus during the 1960s.The Nabugabo lakes comprising of Lake Nabugabo main, and the smaller lakes Kayanja and Kayugi were investigated between 2000 and 2002 with experimental gill netting to evaluate the potential of these lakes in conservation of fish species diversity. Results show that some native fish species especially Oreochromis esculentus, and Oreochromis variabilis and the haplochromine cichlid Prognathochromis venator that have disappeared from Lake Nabugabo still occur in Lakes Kayanja and Kayugi. Inshore habitats with macrophyte cover were also found to be important habitats for the endangered native fish species in the Nabugabo lakes. These lakes and inshore habitats need to be protected to conserve the endangered native fish species and to reduce further decline in fish species diversity.
Resumo:
The Big Manistee River was one of the most well known Michigan rivers to historically support a population of Arctic grayling (Thymallus arctics). Overfishing, competition with introduced fish, and habitat loss due to logging are believed to have caused their decline and ultimate extirpation from the Big Manistee River around 1900 and from the State of Michigan by 1936. Grayling are a species of great cultural importance to Little River Band of Ottawa Indian tribal heritage and although past attempts to reintroduce Arctic grayling have been unsuccessful, a continued interest in their return led to the assessment of environmental conditions of tributaries within a 21 kilometer section of the Big Manistee River to determine if suitable habitat exists. Although data describing historical conditions in the Big Manistee River is limited, we reviewed the literature to determine abiotic conditions prior to Arctic grayling disappearance and the habitat conditions in rivers in western and northwestern North America where they currently exist. We assessed abiotic habitat metrics from 23 sites distributed across 8 tributaries within the Manistee River watershed. Data collected included basic water parameters, streambed substrate composition, channel profile and areal measurements of channel geomorphic unit, and stream velocity and discharge measurements. These environmental condition values were compared to literature values, habitat suitability thresholds, and current conditions of rivers with Arctic grayling populations to assess the feasibility of the abiotic habitat in Big Manistee River tributaries to support Arctic grayling. Although the historic grayling habitat in the region was disturbed during the era of major logging around the turn of the 20th century, our results indicate that some important abiotic conditions within Big Manistee River tributaries are within the range of conditions that support current and past populations of Arctic grayling. Seven tributaries contained between 20-30% pools by area, used by grayling for refuge. All but two tributaries were composed primarily of pebbles, with the remaining two dominated by fine substrates (sand, silt, clay). Basic water parameters and channel depth were within the ranges of those found for populations of Arctic grayling persisting in Montana, Alaska, and Canada for all tributaries. Based on the metrics analyzed in this study, suitable abiotic grayling habitat does exist in Big Manistee River tributaries.
Resumo:
An attempt to improve the food base for brown trout Salmo trutta in Northern Ireland was made in 1958.59 by deliberately introducing English Gammarus pulex into several Irish rivers. In addition. another amphipod Crangonyx pseudogracilis, was later accidently introduced into II ish waters. Our study represents the first attempt to examine the trophic interactions between a native fish predator (S. trutta) and an array of these native (Gammarus duebeni celticus) and introduced (G. pulex and C. pseudogracilis) amphipods. Feeding experiments, involving young brown trout predators and ampiphod prey, revealed that the fish actively selected C. pseudogracilis relative to two alternative Gammarus prey species. Although the trout encountered the Gammarus species more than C. pseudogracilis, they were eaten less than Crangonyx. Difficulties in handling and ingestion of Gammarus by trout may be a. key component of the preference fbr the smaller, more easily handled Crangonyx. The microdistribution of the species was altered by the fish, due to predation being greater in particular microhabitats, Our study showed that the introduction of the herbivorous C. pseudogracilis into Irish freshwaters may represent a useful addition to fish diets. particularly for small and/or juvenile fish. The reprecussions of the deliberate introduction of G. pulex are less clear. It may improve feeding for fish. but only if it can coexist with indigenous macroinvertebrates and thus ultimately improve the range and quantity of possible food items in predator diets. Alternatively, being highly predatory towards other macroinvertebrates including G. d. celticus and C. pseudogracilis. G. pulex may be deleterious to the diversity of the resident benthic community and hence reduce the diversity of prey available to fish predators.
Resumo:
In the coming decades, artificial defence structures will increase in importance worldwide for the protection of coasts against the impacts of global warming. However, the ecological effects of such structures on the natural surroundings remain unclear. We investigated the impact of experimentally introduced tetrapod fields on the demersal fish community in a hard-bottom area in the southern North Sea. The results indicated a significant decrease in fish abundance in the surrounding area caused by migration effects towards the artificial structures. Diversity (HB) and evenness (E) values exhibited greater variation after the introduction of the tetrapods. Additionally, a distinct increase in young-of-the-year (YOY) fish was observed near the structures within the second year after introduction. We suggest that the availability of adequate refuges in combination with additional food resources provided by the artificial structures has a highly species-specific attraction effect. However, these findings also demonstrate that our knowledge regarding the impact of artificial structures on temperate fish communities is still too limited to truly understand the ecological processes that are initiated by the introduction of artificial structures. Long-term investigations and additional experimental in situ work worldwide will be indispensable for a full understanding of the mechanisms by which coastal defence structures interact with the coastal environment.
Resumo:
The micro-scale spatial distribution patterns of a demersal fish and decapod crustacean assemblage were assessed in a hard-bottom kelp environment in the southern North Sea. Using quadrats along line transects, we assessed the in situ fish and crustacean abundance in relation to substratum types (rock, cobbles and large pebbles) and the density of algae. Six fish and four crustacean species were abundant, with Ctenolabrus rupestris clearly dominating the fish community and Galathea squamifera dominating the crustacean community. Differences in the substratum types had an even stronger effect on the micro-scale distribution than the density of the dominating algae species. Kelp had a negative effect on the fish abundances, with significantly lower average densities in kelp beds compared with adjacent open areas. Averaged over all of the substrata, the most attractive substratum for the fish was large pebbles. In contrast, crustaceans did not show a specific substratum affinity. The results clearly indicate that, similar to other complex systems, significant micro-scale species-habitat associations occur in northern hard-bottom environments. However, because of the frequently harsh environmental conditions, these habitats are mainly sampled from ships with sampling gear, and the resulting data cannot be used to resolve small-scale species-habitat associations. A detailed substratum classification and community assessment, often only possible using SCUBA diving, is therefore important to reach a better understanding of the functional relationships between species and their environment in northern temperate waters, knowledge that is very important with respect to the increasing environmental pressure caused by global climate change.