999 resultados para intraplate process
Resumo:
Volcanic eruption centres of the mostly 4.5 Ma-5000 BP Newer Volcanics Province in the Hamilton area of southeastern Australia were examined in detail using a multifaceted approach, including ground truthing and analysis of ArcGIS Total Magnetic Intensity and seamless geology data, NASA Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) digital elevation models and Google Earth satellite image interpretation. Sixteen eruption centres were recognised in the Hamilton area, including three previously unrecorded volcanoes-one of which, the Cas Maar, constitutes the northernmost maar-cone volcanic complex in the Western Plains subprovince. Seven previously allocated eruption centres were placed into question based on field and laboratory observations. Three phases of volcanic activity have been suggested by other authors and are interpreted to correlate with ages of >4 Ma, ca 2 Ma and <0.5 Ma, which may be further subdivided based on preservation of outcrop. Geochemical compositions of the dominantly basaltic products become increasingly alkaline and enriched in incompatible elements from Phases 1 to 2, with Phase 3 eruptions both covering the entire geochemical range and extending into increasingly enriched compositions. This research highlights the importance of a multifaceted approach to landform mapping and demonstrates that additional volcanic centres may yet be discovered in the Newer Volcanics Province
Resumo:
The Rio Branco Rapakivi Batholith belongs to the Cachoeirinha Tectonic Domain, part of the Rio Negro-Juruena Geochronological Province located on the southwestern portion of the Amazonian Craton in Mato Grosso, Central Brasil. A systematic geological mapping on a 1:100.000 scale, coupled with petrographic and geochemical studies allowed to redefine this batholithic unit, to recognize faciological variations and to characterize the geochemical features of this rapakivi magmatism. The batholith is constituted by two major plutonic suites, the first forming a basic suite of fine-grained, equigranular, mesoto melanocratic gray to black lithotypes, with usually discontinuous porphyritic varieties located near the margins of the intrusion. The second one is characterized by acid to intermediate rocks constituted by porphyritic granites, in part granophyric, with rapakivi textures. They have K-feldspar phenocrysts of up to 4cm. Three distinct petrographic facies are recognized in this suite: 1. equigranular to pegmatitic monzogranites; 2. red rapakivi leuco-monzogranites; 3. dark red rapakivi monzogranites to quartz-monzonites. Rocks present SiO2 contents from 67% to 73%, show peraluminous to metaluminous compositions and define a high-K calc-alkaline to shoshonitic magmatism in an I- and A-type, post-orogenic to anorogenic intraplate environment. The magmatic processes are associated with the end of the collisional event that consolidated and stabilized the SW part of the Amazonian Craton.
Resumo:
This paper presents a review on the geotectonic framework of the Southeastern Brazil and neighborhoods, and its importance in the regional geologic evolution, which was exposed as a main conference at the XI Symposium of Southeast Geology (São Pedro, SP, 2009). Although the geologic history dates back to the Archean, and Paleo to Mesoproterozoic processes related to the evolution of the Columbia and Rodinia supercontinents occurred, it was in the Neoproterozoic that the most important structural features developed due to collisional tectonics. The collisions began in the Brasiliano I (900-700 Ma), but mainly developed during the Brasiliano II (670-530 Ma) and ended in the Brasiliano III (580-490 Ma), resulting the orogenic systems of Mantiqueira and Tocantins. The final consolidation resulted in Gondwana, around 460 My in the part which correspond to the South America Platform. The structural features represent an important heritage that controlled much the Phanerozic geologic and tectonic processes: the formation of the Paraná Basin in the Ordovician-Jurassic, the South Atlantian reactivation (active magmatism and Paraná LIP, rifting, morphogenesis and the Atlantic opening), and the Neogene-Quaternary intraplate discrete neotectonism.
Resumo:
The Equatorial Atlantic Margin evolved from three rift systems recorded by a complex set of sedimentary basins developed since Upper Triassic to the Lower Cretaceous (Albian). The first rift system formed Foz do Amazonas Basin in Upper Triassic; the second phase formed Marajó Basin in Berriasian, a new rift in Foz do Amazonas Basin in Valanginian and Bragança-Viseu, Ilha Nova, São Luís e Barreirinhas basins in Aptian; the third phase formed Barreirinhas and Pará- Maranhão basins and a new rifting in the Foz do Amazonas Basin between the Aptian and Albian and evolved to continental break up. The main paleostress field during rift evolution was NE-SW and after the continental break up took the E-W direction, from the development of transform zones in the oceanic crust. From Miocene, South America was subjected to intraplate tectonics, which resulted in formation of E-W transcurrent faults that generated transtensive and transpressive segments that formed sedimentary basins and hills, resulting in changes in the drainage network. In Quaternary the landscape was modified by the last ice age that changed the sea level; the coastal drainage network was drowning resulting in the formation of the current line coast.
Resumo:
The Warburton-Cooper basins, central Australia, include a multitude of reactivated fracture-fault networks related to a complex, and poorly understood, tectonic evolution. We investigated authigenic illites from a granitic intrusion and sedimentary rocks associated with prominent structural features (Gidgealpa-Merrimelia-Innamincka Ridge and the Nappamerri Trough). These were analysed by 40Ar-39Ar, 87Rb-87Sr and 147Sm-143Nd geochronology to explore the thermal and tectonic histories of central Australian basins. The combined age data provide evidence for three major periods of fault reactivation throughout the Phanerozoic. While Carboniferous (323.3 ± 9.4 Ma) and Late Triassic ages (201.7 ± 9.3 Ma) derive from basin-wide hydrothermal circulation, Cretaceous ages (~128 to ~86 Ma) reflect episodic fluid flow events restricted to the synclinal Nappamerri Trough. Such events result from regional extensional tectonism derived from the transferral of far-field stresses to mechanically and thermally weakened regions of the Australian continent. Specifically, Cretaceous ages reflect continent-wide transmission of tensional stress from a > 2500 km long rifting event on the Eastern (and southern) Australian margin associated with break-up of Gondwana and opening of the Tasman Sea. By integrating 40Ar-39Ar, 87Rb-87Sr and 147Sm-143Nd dating, this study highlights the use of authigenic illite in temporally constraining the tectonic evolution of intracontinental basins that would otherwise remain unknown. Furthermore, combining Sr- and Ar-isotopic systems enables more accurate dating of authigenesis whilst significantly reducing geochemical pitfalls commonly associated with these radioisotopic dating methods.
Resumo:
This thesis presents and discusses the results of ambient seismic noise correlation for two different environments: intraplate and Mid-Atlantic Ridge. The coda wave interferometry method has also been tested for the intraplate data. Ambient noise correlation is a method that allows to retrieve the structural response between two receivers from ambient noise records, as if one of the station was a virtual source. It has been largely used in seismology to image the subsurface and to monitor structural changes associated mostly with volcanic eruptions and large earthquakes. In the intraplate study, we were able to detect localized structural changes related to a small earthquake swarm, which main event is mR 3.7, North-East of Brazil. We also showed that the 1-bit normalization and spectral whitening result on the loss of waveform details and that the phase auto-correlation, which is amplitude unbiased, seems to be more sensitive and robust for our analysis of a small earthquake swarm. The analysis of 6 months of data using cross-correlations detect clear medium changes soon after the main event while the auto-correlations detect changes essentially after 1 month. It could be explained by fluid pressure redistribution which can be initiated by hydromechanical changes and opened path ways to shallower depth levels due to later occurring earthquakes. In the Mid-Atlantic Ridge study, we investigate structural changes associated with a mb 4.9 earthquake in the region of the Saint Paul transform fault. The data have been recorded by a single broadband seismic station located at less than 200 km from the Mid-Atlantic ridge. The results of the phase auto-correlation for a 5-month period, show a strong co-seismic medium change followed by a relatively fast post-seismic recovery. This medium change is likely related to the damages caused by the earthquake’s ground shaking. The healing process (filling of the new cracks) that lasted 60 days can be decomposed in two phases, a fast recovery (70% in ~30 days) in the early post-seismic stage and a relatively slow recovery later (30% in ~30 days). In the coda wave interferometry study, we monitor temporal changes of the subsurface caused by the small intraplate earthquake swarm mentioned previously. The method was first validated with synthetics data. We were able to detect a change of 2.5% in the source position and a 15% decrease of the scatterers’ amount. Then, from the real data, we observed a rapid decorrelation of the seismic coda after the mR 3.7 seismic event. This indicates a rapid change of the subsurface in the fault’s region induced by the earthquake.
Resumo:
This thesis presents and discusses the results of ambient seismic noise correlation for two different environments: intraplate and Mid-Atlantic Ridge. The coda wave interferometry method has also been tested for the intraplate data. Ambient noise correlation is a method that allows to retrieve the structural response between two receivers from ambient noise records, as if one of the station was a virtual source. It has been largely used in seismology to image the subsurface and to monitor structural changes associated mostly with volcanic eruptions and large earthquakes. In the intraplate study, we were able to detect localized structural changes related to a small earthquake swarm, which main event is mR 3.7, North-East of Brazil. We also showed that the 1-bit normalization and spectral whitening result on the loss of waveform details and that the phase auto-correlation, which is amplitude unbiased, seems to be more sensitive and robust for our analysis of a small earthquake swarm. The analysis of 6 months of data using cross-correlations detect clear medium changes soon after the main event while the auto-correlations detect changes essentially after 1 month. It could be explained by fluid pressure redistribution which can be initiated by hydromechanical changes and opened path ways to shallower depth levels due to later occurring earthquakes. In the Mid-Atlantic Ridge study, we investigate structural changes associated with a mb 4.9 earthquake in the region of the Saint Paul transform fault. The data have been recorded by a single broadband seismic station located at less than 200 km from the Mid-Atlantic ridge. The results of the phase auto-correlation for a 5-month period, show a strong co-seismic medium change followed by a relatively fast post-seismic recovery. This medium change is likely related to the damages caused by the earthquake’s ground shaking. The healing process (filling of the new cracks) that lasted 60 days can be decomposed in two phases, a fast recovery (70% in ~30 days) in the early post-seismic stage and a relatively slow recovery later (30% in ~30 days). In the coda wave interferometry study, we monitor temporal changes of the subsurface caused by the small intraplate earthquake swarm mentioned previously. The method was first validated with synthetics data. We were able to detect a change of 2.5% in the source position and a 15% decrease of the scatterers’ amount. Then, from the real data, we observed a rapid decorrelation of the seismic coda after the mR 3.7 seismic event. This indicates a rapid change of the subsurface in the fault’s region induced by the earthquake.