960 resultados para international STEM comparisons
Resumo:
"This chartbook provides comparable information that can be used to assess United States (U.S.) economic and labor performance relative to other countries and to evaluate the competitive position of the U.S. in international trade." -- Foreword.
Resumo:
Despite efforts to motivate students to engage in Science, technology, engineering and mathematics (STEM) education, women are still underrepresented in these areas in the workforce and higher education. Targeting females at high school or earlier may be a key towards engaging them in STEM. In this paper we report on the research question: How do middle school females interact for learning about engineering education? This ethnographic study, part of a three-year longitudinal research project, investigated Year 8 female students’ learning about engineering concepts associated with designing, constructing, testing, and evaluating a catapult. Through a series of lead-up lessons and the four lesson catapult challenge (total of 18 x 45-minute lessons over 9 weeks), data from two girls within a focus group showed that the students needed to: (1) receive clarification on engineering terms to facilitate more fluent discourse, (2) question and debate conceptual understandings without peers being judgemental, and (3) have multiple opportunities for engaging with materials towards designing, constructing and explaining key concepts learnt. Implications for teachers undertaking STEM education are evident, including outlining expectations for clarifying STEM terms, outlining to students about interacting non-judgementally, and providing multiple opportunities for interacting within engineering education.
Resumo:
This paper begins by identifying three main reasons why many of the more STEM-Talented students at our universities do not consider enrolling in STEM teacher education programs. Then based on a review of the literature, a framework for addressing this dilemma is presented and discussed. This framework consists of a set of three principles together with eleven strategies for the operationalization of these principles. During the presentation of the framework, the roles of governments and of universities at the institutional, faculty/division and departmental levels in the operationalization of the frameworks are examined.
Resumo:
This paper begins by identifying the key attributes for future STEM teachers. Then based on a review of the literature, a framework for informing reforms to pre-service teacher education programs to facilitate the development of these attributes in future STEM teachers is presented and discussed. This framework consists of a set of three principles together with eight strategies for the operationalization of these principles. During the discussion, the implications for the structure and implementation of future pre-service STEM teacher education programs are explored.
Resumo:
In this paper, we report on how peer scaffolding was used to effect change in tertiary teaching practice and academic disposition in the use of Information and Communication Technology (ICT) in Science teaching and learning. We present a small-scale case study investigating the practice of one of this paper’s authors. It is told through two salient episodes which narratively describe the scaffolding used to support a teaching experiment. This was made possible through the national Teaching Teachers for the Future Project (2011-2012) which aimed to enhance the technological pedagogical capability of pre-service teachers across Australia. The outcome was a demonstrable shift in the academic’s disposition towards the use and benefits of ICT in teaching science and an increase in skills and confidence for both the academic and his students. This study and its outcomes fit within the contemporary push to “re-imagine” the teaching of Science, and more broadly of STEM, in schools.
Resumo:
In this paper, we report on how peer scaffolding was used to effect change in tertiary teaching practice and academic disposition in the use of Information and Communication Technology (ICT) in Science teaching and learning. We present a small-scale case study investigating the practice of one of this paper’s authors. It is told through two salient episodes which narratively describe the scaffolding used to support a teaching experiment. This was made possible through the national Teaching Teachers for the Future Project (2011-2012) which aimed to enhance the technological pedagogical capability of pre-service teachers across Australia. The outcome was a demonstrable shift in the academic’s disposition towards the use and benefits of ICT in teaching science and an increase in skills and confidence for both the academic and his students. This study and its outcomes fit within the contemporary push to “re-imagine” the teaching of Science, and more broadly of STEM, in schools.
Resumo:
Integrating Science, Technology, Engineering and Mathematics (STEM) subjects can be engaging for students, can promote problem-solving and critical thinking skills and can help build real-world connections. However, STEM has long been an area of some confusion for some educators. While they can see many of the conceptual links between the various domains of knowledge they often struggle to meaningfully integrate and simultaneously teach the content and methodologies of each these areas in a unified and effective way for their students. Essentially the question is;how can the content and processes of four disparate and yet integrated learning areas be taught at the same time? How can the integrity of each of the areas be maintained and yet be learnt in a way that is complementary? Often institutional barriers exitin schools and universities to the integration of STEM. Organizationally, at a departmental and administrative level, the teaching staff may be co-located, but when it comes to classroom practice or the teaching and learning of these areas they are usually taught very separately. They are usually taught in different kinds of spaces, in different ways (using different pedagogical approaches) and at different times. But is this the best way for students to engage with the STEM areas of learning? How can we make learning more integrated, meaningful and engaging for the students?
Resumo:
New Australian curriculum documents and government initiatives advocate the inclusion of Asian perspectives, which is highly relevant to the STEM fields. For Australia and other countries, STEM education is an opportunity to develop competencies towards employment in high-demand areas, yet the world’s knowledge of STEM is changing rapidly, requiring continuous analysis to meet market demands. This paper presents the need for “collaborations between nations” through research to advance each country’s STEM agenda towards further globalisation of education with the sharing of knowledge. Research is needed on views of what constitutes cultural capital for STEM, which also involves understanding past and current STEM endeavours occurring within various countries. Most importantly for STEM education is uncovering instructional innovations aligned with countries’ cultures and STEM endeavours. Research questions are provided in this paper to stimulate ideas for investigating in these fields. Economically, and as demonstrated recently by Greece and Spain, countries throughout the world can no longer operate independently for advancing standards of living. The world needs to recognise interdependence not only in trade and resources but also through the knowledge base that exists within countries. Learning together globally means transitioning from independence to interdependence in STEM education that will help each country meet global demands.
Resumo:
Visuals are a central feature of STEM in all levels of education and many areas of employment. The wide variety of visuals that students are expected to master in STEM prevents an approach that aims to teach students about every type of visual that they may encounter. This paper proposes a pedagogy that can be applied across year levels and learning areas, allowing a school-wide, cross-curricular, approach to teaching about visual, that enhances learning in STEM and all other learning areas. Visuals are classified into six categories based on their properties, unlike traditional methods that classify visuals according to purpose. As visuals in the same category share common properties, students are able to transfer their knowledge from the familiar to unfamiliar in each category. The paper details the classification and proposes some strategies that can be can be incorporated into existing methods of teaching students about visuals in all learning areas. The approach may also assist students to see the connections between the different learning areas within and outside STEM.
Resumo:
The Earth and its peoples are facing great challenges. As a species, humans are over-consuming the Earth’s resources and compromising the capacity of both natural and social systems to function in healthy and sustainable ways. Education at all levels and in all contexts, has a key role in helping societies move to more sustainable ways of living. Two areas in need of catch-up in relation to Education for Sustainable Development (ESD) are early childhood education and teacher education. Another area of challenge for ESD is the way it is currently oriented. To date, a great deal of emphasis has been placed on scientific and technological solutions to sustainability issues. This has led to an emphasis on STEM education as education’s main way of addressing sustainability. However, in this paper it is argued that sustainably is primarily a social issue that requires interdisciplinary education approaches. STEM approaches to ESD - emphasising knowledge construction and problem-solving - cannot, on their own, deal effectively with attitudes, values and actions towards more sustainable ways of living. In China and Australia, there are already policies, frameworks, guidelines and initiatives, such as Green Schools and Sustainable Schools that support such forms of ESD. STEM educators need to reach out to social scientists and social educators in order to more fully engage with activist and collaborative educational responses that equip learners with the knowledge, dispositions and capacities to ‘make a difference’.
Resumo:
Building rich and authentic learning experiences in the STEM classroom, is a challenge for many educators within Higher Education. While many Higher Education Institutions have embraced the need to transform current teaching and learning practices and include a range of online tools, this has often been met with some resistance and approaches that do not always recognise the academic who are a critical component to the success of the transformational process. Over the last decade the Internet has evolved from being a tool used by a few dedicated educators to one that is being used by the majority of educators. However, what is important is how this great resource is used in teaching and learning to allow students to build knowledge. The ability for students to construct knowledge and engage in higher order thinking skills is at the heart of educational practices, and building a community of learners has the potential to support these practices, especially within STEM education. This paper explores the relationship between students and an academic teaching in a technology rich STEM learning environment and their adoption of social community and shared tools. In particular the paper reports on the critical components that make a successful community of learners and the educational tools and approaches that were successfully used to enhance the student learning experience in a STEM classroom.
Resumo:
The increase in the availability and use of portable mobile devices has had a number of impacts on society. In particular, this impact has been seen within Higher Education Institutions where staff and students are using these devices for both simple and complex tasks. Within undergraduate teacher education courses there is an expectation that students will be fully prepared for teaching their respective areas of expertise as well as having the ability to use ICT, and in particular portable mobile devices, to support teaching and learning. This paper reports on a small case study into the use of portable mobile devices in a science unit, where the students (N=16) bring their own devices into the classroom and use them in lectures, tutorials and workshops. The study highlights the changing nature of classroom practice within the university setting and the challenges faced by teaching staff and students when using these devices.