854 resultados para interlayer linkages
Resumo:
Through larger-scale molecular dynamics simulations, we investigated the impacts from vacancy-initiated linkages on the thermal conductivity of bilayer graphene sheets (of size L × W = 24.5 nm × 3.7 nm). Three different interlayer linkages, including divacancy bridging, “spiro” interstitial bridging and Frenkel pair defects, are considered. It is found that the presence of interlayer linkages induces a significant degradation in the thermal conductivity of the bilayer graphene sheet. The degradation is strongly dependent on the interlayer linkage type, concentration and location. More importantly, the linkages that contain vacancies lead to more severe suppression of the thermal conductivity, in agreement with theoretical predictions that vacancies induce strong phonon scattering. Our finding provides useful guidelines for the application of multilayer graphene sheets in practical thermal management.
Resumo:
Young children’s transition into school has been constructed as a time-limited period around initial school entry, a set of teacher or school practices, a process of establishing continuity of experience, a multi-layered, multi-year set of experiences and a dynamic relationship-based process. Although preparedness issues continue to be addressed, there is a trend towards more complex understandings of transition emphasizing continuity, relationships amongst multiple stakeholders, system coherence across extended time periods and enhancement of resilience and transition capital. This article, in the early years of a new century, outlines some conceptualisations of readiness and transition as they relate to diverse children’s pathways through early childhood and early school settings.
Resumo:
The mechanism for the decomposition of hydrotalcite remains unsolved. Controlled rate thermal analysis enables this decomposition pathway to be explored. The thermal decomposition of hydrotalcites with hexacyanoferrite(II) and hexacyanoferrate(III) in the interlayer has been studied using controlled rate thermal analysis technology. X-ray diffraction shows the hydrotalcites studied have a d(003) spacing of 11.1 and 10.9 Å which compares with a d-spacing of 7.9 and 7.98 Å for the hydrotalcite with carbonate or sulphate in the interlayer. Calculations based upon CRTA measurements show that 7 moles of water is lost, proving the formula of hexacyanoferrite(II) intercalated hydrotalcite is Mg6Al2(OH)16[Fe(CN)6]0.5 .7 H2O and for the hexacyanoferrate(III) intercalated hydrotalcite is Mg6Al2(OH)16[Fe(CN)6]0.66 * 9 H2O. Dehydroxylation combined with CN unit loss occurs in three steps between a) 310 and 367°C b) 367 and 390°C and c) between 390 and 428°C for both the hexacyanoferrite(II) and hexacyanoferrate(III) intercalated hydrotalcite.
Resumo:
Based on the theory of international stock market co-movements, this study shows that a profitable trading strategy can be developed. The U.S. market return is considered as overnight information by ordinary investors in the Asian and the European stock markets, and opening prices in local markets reflect the U.S. overnight return. However, smart traders would either judge the impact of overnight information more correctly, or predict unreleased information. Thus, the difference between expected opening prices based on the U.S. return and actual opening prices is counted as smart traders’ prediction power, which is either a buy or a sell signal. Using index futures price data from 12 countries from 2000 to 2011, cumulative returns on the trading strategy are calculated with taking into account transaction costs. The empirical results show that the proposed trading strategy generates higher riskadjusted returns than that of the benchmarks in 12 sample countries. The trading performances for the Asian markets surpass those for the European markets because the U.S. return is the only overnight information for the Asian markets whereas the Asian markets returns are additional information to the European investors.
Resumo:
Least developed countries (LDCs) are the primary victims of environmental changes, including present and future impacts of climate change. Environmental degradation poses a serious threat to the conservation and sustainable use of natural resources, thus hindering development in LDCs. Simultaneously, poverty is itself both a major cause and effect of global environmental problems. Against this backdrop, this essay argues that without recognition and protection of a collective right to development, genuine environmental protection will remain unachievable. Further, this essay submits that, particularly in the context of LDCs, the right to environment and the right to development are inseparable. Finally, this essay argues that the relationship between the right to environment and the right to development must fall within the paradigm of sustainable development if the promotion and protection of those rights are to be justified.
Resumo:
Graphene-based resonators are envisioned to build the ultimate limit of two-dimensional nanoelectromechanical system due to their ultrasensitive detection of mass, force, pressure and charge. However, such application has been greatly impeded by their extremely low quality factor. In the present work, we explore, using the large-scale molecular dynamics simulation, the possibility of tailoring the resonance properties of a bilayer graphene sheet (GS) with interlayer sp3 bonds. For the bilayer GS resonator with interlayer sp3 bonds, we discovered that the sp3 bonds can either degrade or enhance the resonance properties of the resonator depending on their density and location. It is found that the distribution of sp3 bonds only along the edges of either pristine or hydrogenated bilayer GS, leads to a greatly enhanced quality factor. A quality factor of ~1.18×105 is observed for a 3.07×15.31 nm2 bilayer GS resonator with sp3 bonds, which is more than 30 times larger comparing with that of a pristine bilayer GS. The present study demonstrates that the resonance properties of a bilayer GS resonator can be tuned by introducing sp3 bonds. This finding provides a useful guideline for the synthesis of the bilayer GS for its application as a resonator component.
Resumo:
Background Patient satisfaction is influenced by the setting in which patients are treated and the employees providing care. However, to date, limited research has explained how health care organizations or nurses influence patient satisfaction. Objectives The purpose of this study was to test the model that service climate would increase the effort and performance of nursing groups and, in turn, increase patient satisfaction. Method This study incorporated data from 156 nurses, 28 supervisors, and 171 patients. A cross-sectional design was utilized to examine the relationship between service climate, nurse effort, nurse performance and patient satisfaction. Structural equation modeling was conducted to test the proposed relationships. Results Service climate was associated with the effort that nurses directed towards technical care and extra-role behaviors. In turn, the effort that nurses exerted predicted their performance, as rated by their supervisors. Finally, task performance was a significant predictor of patient satisfaction. Conclusions This study suggests that both hospital management and nurses play a role in promoting patient satisfaction. By focusing on creating a climate for service, health care managers can improve nursing performance and patient satisfaction with care.
Resumo:
A plasma-assisted concurrent Rf sputtering technique for fabrication of biocompatible, functionally graded CaP-based interlayer on Ti-6Al-4V orthopedic alloy is reported. Each layer in the coating is designed to meet a specific functionality. The adherent to the metal layer features elevated content of Ti and supports excellent ceramic-metal interfacial stability. The middle layer features nanocrystalline structure and mimics natural bone apatites. The technique allows one to reproduce Ca/P ratios intrinsic to major natural calcium phosphates. Surface morphology of the outer, a few to few tens of nanometers thick, layer, has been tailored to fit the requirements for the bio-molecule/protein attachment factors. Various material and surface characterization techniques confirm that the optimal surface morphology of the outer layer is achieved for the process conditions yielding nanocrystalline structure of the middle layer. Preliminary cell culturing tests confirm the link between the tailored nano-scale surface morphology, parameters of the middle nanostructured layer, and overall biocompatibility of the coating.
Resumo:
This study investigates the price linkage among the US major energy sources, considering structural breaks in time series, to provide information for diversifying the US energy sources. We find that only a weak linkage sustains among crude oil, gasoline, heating oil, coal, natural gas, uranium and ethanol futures prices. This implies that the US major energy source markets are not integrated as one primary energy market. Our tests also reveal that uranium and ethanol futures prices have very weak linkages with other major energy source prices. This indicates that the US energy market is still at a stage where none of the probable alternative energy source markets are playing the role as substitute or complement markets for the fossil fuel energy markets.
Resumo:
This study investigates how markets for different levels of copper purity are interrelated by testing the long-run price linkage and causalities among the copper futures, primary, copper scrap, and brass scrap markets. It is expected that copper markets that deal with high purity levels, such as the futures, primary, and copper scrap markets, have a long-run relationship. However, brass scrap markets where copper with a lower purity is traded may not have a price linkage with other copper markets. The results reveal that a long-run relationship holds between the futures, primary, and copper scrap markets but the brass scrap market does not have a long-run relationship with the other markets. From the short-run and long-run causality tests, we determine that the futures market plays an important role in transmitting price information to other copper markets while such information flow is not found for the brass scrap market.
Resumo:
The broad aim of of this thesis is to contribute to understanding how the relationships between culture, employment and education can help Tanzania's young people secure jobs, and survive in the creative workforce so as to better their future. Based on a range of interviews and other data in Tanzania, the study considers how to integrate cultural expressions into arts education (education in art and education through art) as a tool for nurturing young people's creative talents for their future sustainable employment in Tanzania.
Resumo:
With the aim of elucidating the seasonal behaviour of rare earth elements (REEs), surface and groundwaters were collected under dry and wet conditions in different hydrological units of the Teviot Brook catchment (Southeast Queensland, Australia). Sampled waters showed a large degree of variability in both REE abundance and normalised patterns. Overall REE abundance ranged over nearly three orders of magnitude, and was consistently lower in the sedimentary bedrock aquifer (18ppt<∑REE<477ppt) than in the other hydrological systems studied. Abundance was greater in springs draining rhyolitic rocks (∑REE=300 and 2054ppt) than in springs draining basalt ranges (∑REE=25 and 83ppt), yet was highly variable in the shallow alluvial groundwater (16ppt<∑REE<5294ppt) and, to a lesser extent, in streamwater (85ppt<∑REE<2198ppt). Generally, waters that interacted with different rock types had different REE patterns. In order to obtain an unbiased characterisation of REE patterns, the ratios between light and middle REEs (R(M/L)) and the ratios between middle and heavy REEs (R(H/M)) were calculated for each sample. The sedimentary bedrock aquifer waters had highly evolved patterns depleted in light REEs and enriched in middle and heavy REEs (0.17
Resumo:
This paper investigates the influence of interlayer properties on the blast performance of laminated glass (LG) panels. A parametric study is carried out by varying the thickness and Young’s modulus (E) of the interlayer under two different blast loads. Results indicate the existence of a critical interlayer thickness (or E) that causes the onset of interlayer failure. This should be achieved in the design to enhance energy absorption, reduce support reactions and initiate a safer failure mode. Present findings provide information to achieve such design targets and enable safe and efficient performance of LGs under credible blast loads.