936 resultados para interlateral asymmetry
Resumo:
Evidence exists that both right and left hemisphere attentional mechanisms are mobilized when attention is directed to the right visual hemifield and only right hemisphere attentional mechanisms are mobilized when attention is directed to the left visual hemifield. This arrangement might lead to a rightward bias of automatic attention. The hypothesis was investigated by testing male volunteers, wherein a ""location discrimination"" reaction time task (Experiments 1 and 3) and a ""location and shape discrimination"" reaction time task (Experiments 2 and 4) were used. Unilateral (Experiments 1 and 2) and unilateral or bilateral (Experiments 3 and 4) peripheral visual prime stimuli were used to control attention. Reaction time to a small visual target stimulus in the same location or in the horizontally opposite location was evaluated. Stimulus onset asynchronies (SOAs) were 34, 50, 67, 83 and 100 ms. An important prime stimulus attentional effect was observed as early as 50 ms in the four experiments. In Experiments 2, 3 and 4, this effect was larger when the prime stimulus occurred in the right hemifield than when it occurred in the left hemifield for SOA 100 ms. In Experiment 4, when the prime stimulus occurred simultaneously in both hemifields, reaction time was faster for the right hemifield and for SOA 100 ms. These results indicate that automatic attention tends to favor the right side of space, particularly when identification of the target stimulus shape is required. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
The concept of organismic asymmetry refers to an inherent bias for seeking explanations of human performance and behaviour based on internal mechanisms and referents. A weakness in this tendency is a failure to consider the performer–environment relationship as the relevant scale of analysis. In this paper we elucidate the philosophical roots of the bias and discuss implications of organismic asymmetry for sport science and performance analysis, highlighting examples in psychology, sports medicine and biomechanics.
Resumo:
Purpose - Contemporary offshore Information System Development (ISD) outsourcing is becoming even more complex. Outsourcing partner has begun ‘re-outsourcing’ components of their projects to other outsourcing companies to minimize cost and gain efficiencies. This paper aims to explore intra-organizational Information Asymmetry of re-outsourced offshore ISD outsourcing projects. Design/methodology/approach - An online survey was conducted to get an overall view of Information Asymmetry between Principal and Agents (as per the Agency theory). Findings - Statistical analysis showed that there are significant differences between the Principal and Agent on clarity of requirements, common domain knowledge and communication effectiveness constructs, implying an unbalanced relationship between the parties. Moreover, our results showed that these three are significant measurement constructs of Information Asymmetry. Research limitations/implications - In our study we have only considered three main factors as common domain knowledge, clarity of requirements and communication effectiveness as three measurement constructs of Information Asymmetry. Therefore, researches are encouraged to test the proposed constructs further to increase its precision. Practical implications - Our analysis indicates significant differences in all three measurement constructs, implying the difficulties to ensure that the Agent is performing according to the requirements of the Principal. Using the Agency theory as theoretical view, this study sheds light on the best contract governing methods which minimize Information Asymmetry between the multiple partners within ISD outsourcing organizations. Originality/value - Currently, to the best of our knowledge, no study has undertaken research on Intra-organizational Information Asymmetry in re-outsourced offshore ISD outsourcing projects.
Resumo:
Objective Recently, Taylor et al. reported that use of the BrainLAB m3 microMLC, for stereotactic radiosurgery, results in a decreased out-of-field dose in the direction of leaf-motion compared to the outof- field dose measured in the direction orthogonal to leaf-motion [1]. It was recommended that, where possible, patients should be treated with their superior–inferior axes aligned with the microMLCs leafmotion direction, to minimise out-of-field doses [1]. This study aimed, therefore, to examine the causes of this asymmetry in outof- field dose and, in particular, to establish that a similar recommendation need not be made for radiotherapy treatments delivered by linear accelerators without external micro-collimation systems. Methods Monte Carlo simulations were used to study out-of-field dose from different linear accelerators (the Varian Clinacs 21iX and 600C and the Elekta Precise) with and without internal MLCs and external microMLCs [2]. Results Simulation results for the Varian Clinac 600C linear accelerator with BrainLAB m3 microMLC confirm Taylor et als [1] published experimental data. The out-of-field dose in the leaf motion direction is deposited by lower energy (more obliquely scattered) photons than the out-of-field dose in the orthogonal direction. Linear accelerators without microMLCs produce no asymmetry in out-offield dose. Conclusions The asymmetry in out-of-field dose previously measured by Taylor et al. [1] results from the shielding characteristics of the BrainLAB m3 microMLC device and is not produced by the linear accelerator to which it is attached.
Resumo:
Brain asymmetry, or the structural and functional specialization of each brain hemisphere, has fascinated neuroscientists for over a century. Even so, genetic and environmental factors that influence brain asymmetry are largely unknown. Diffusion tensor imaging (DTI) now allows asymmetry to be studied at a microscopic scale by examining differences in fiber characteristics across hemispheres rather than differences in structure shapes and volumes. Here we analyzed 4. Tesla DTI scans from 374 healthy adults, including 60 monozygotic twin pairs, 45 same-sex dizygotic pairs, and 164 mixed-sex DZ twins and their siblings; mean age: 24.4 years ± 1.9 SD). All DTI scans were nonlinearly aligned to a geometrically-symmetric, population-based image template. We computed voxel-wise maps of significant asymmetries (left/right differences) for common diffusion measures that reflect fiber integrity (fractional and geodesic anisotropy; FA, GA and mean diffusivity, MD). In quantitative genetic models computed from all same-sex twin pairs (N=210 subjects), genetic factors accounted for 33% of the variance in asymmetry for the inferior fronto-occipital fasciculus, 37% for the anterior thalamic radiation, and 20% for the forceps major and uncinate fasciculus (all L > R). Shared environmental factors accounted for around 15% of the variance in asymmetry for the cortico-spinal tract (R > L) and about 10% for the forceps minor (L > R). Sex differences in asymmetry (men > women) were significant, and were greatest in regions with prominent FA asymmetries. These maps identify heritable DTI-derived features, and may empower genome-wide searches for genetic polymorphisms that influence brain asymmetry.
Resumo:
Brain asymmetry has been a topic of interest for neuroscientists for many years. The advent of diffusion tensor imaging (DTI) allows researchers to extend the study of asymmetry to a microscopic scale by examining fiber integrity differences across hemispheres rather than the macroscopic differences in shape or structure volumes. Even so, the power to detect these microarchitectural differences depends on the sample size and how the brain images are registered and how many subjects are studied. We fluidly registered 4 Tesla DTI scans from 180 healthy adult twins (45 identical and fraternal pairs) to a geometrically-centered population mean template. We computed voxelwise maps of significant asymmetries (left/right hemisphere differences) for common fiber anisotropy indices (FA, GA). Quantitative genetic models revealed that 47-62% of the variance in asymmetry was due to genetic differences in the population. We studied how these heritability estimates varied with the type of registration target (T1- or T2-weighted) and with sample size. All methods consistently found that genetic factors strongly determined the lateralization of fiber anisotropy, facilitating the quest for specific genes that might influence brain asymmetry and fiber integrity.
Resumo:
The work studies the extent of asymmetric flow in water models of continuous casting molds of two different configurations. In the molds where fluid is discharged through multiple holes at the bottom, the flow pattern in the lower portion depends on the size of the lower two recirculating domains. If they reach the mold bottom, the flow pattern in the lower portion is symmetrical about the central plane; otherwise, it is asymmetrical. On the other hand, in the molds where the fluid is discharged through the entire mold cross section, the flow pattern is always asymmetrical if the aspect ratio is 1:6.25 or more. The fluid jet swirls while emerging through the nozzle. The interaction of the swirling Jets with the wide sidewalls of the mold gives rise to asymmetrical flow inside the mold. In the molds with lower aspect ratios, where the jets do not touch the wide side walls, the flow pattern is symmetrical about the central plane.
Resumo:
We believe the Babcock-Leighton process of poloidal field generation to be the main source of irregularity in the solar cycle. The random nature of this process may make the poloidal field in one hemisphere stronger than that in the other hemisphere at the end of a cycle. We expect this to induce an asymmetry in the next sunspot cycle. We look for evidence of this in the observational data and then model it theoretically with our dynamo code. Since actual polar field measurements exist only from the 1970s, we use the polar faculae number data recorded by Sheeley (1991, 2008) as a proxy of the polar field and estimate the hemispheric asymmetry of the polar field in different solar minima during the major part of the twentieth century. This asymmetry is found to have a reasonable correlation with the asymmetry of the next cycle. We then run our dynamo code by feeding information about this asymmetry at the successive minima and compare the results with observational data. We find that the theoretically computed asymmetries of different cycles compare favorably with the observational data, with the correlation coefficient being 0.73. Due to the coupling between the two hemispheres, any hemispheric asymmetry tends to get attenuated with time. The hemispheric asymmetry of a cycle either from observational data or from theoretical calculations statistically tends to be less than the asymmetry in the polar field (as inferred from the faculae data) in the preceding minimum. This reduction factor turns out to be 0.43 and 0.51 respectively in observational data and theoretical simulations.
Resumo:
Lantana camara L. (Verbenaceae) is a weed of great significance in Australia and worldwide, but little is known about connections among components of its life history. We document over a 3-year period, the links between L. camara seed-bank dynamics and its above-ground growth, including size asymmetry in four land-use types (a farm, a hoop pine plantation and two open eucalypt forests) invaded by the weed near Brisbane, Queensland Australia. Seed-bank populations varied appreciably across sites and in response to rainfall and control measures, and they were higher (~1,000 seeds/m2) when annual rainfall was 15-30 % below the long-term yearly average. Fire reduced seed-bank populations but not the proportion germinating (6-8 %). Nearly a quarter of fresh seeds remain germinable after 3 years of soil burial. For small seedlings (<10 cm high), the expected trade-offs in two life-history traits-survival and growth-did not apply; rather the observed positive association between these two traits, coupled with a persistent seed-bank population could contribute to the invasiveness of the plant. Relationships between absolute growth rate and initial plant size (crown volume) were positively linear, suggesting that most populations are still at varying stages of the exponential phase of the sigmoid growth; this trend also suggests that at most sites and despite increasing stand density and limiting environmental resources of light and soil moisture, lantana growth is inversely size asymmetric. From the observed changes in measures of plant size inequality, asymmetric competition appeared limited in all the infestations surveyed. © 2013 Crown Copyright as represented by: Department of Agriculture, Fisheries and Forestry, Australia.
Resumo:
We use the Lippman-Schwinger scattering theory to study nonequilibrium electron transport through an interacting open quantum dot. The two-particle current is evaluated exactly while we use perturbation theory to calculate the current when the leads are Fermi liquids at different chemical potentials. We find an interesting two-particle resonance induced by the interaction and obtain criteria to observe it when a small bias is applied across the dot. Finally, for a system without spatial inversion symmetry, we find that the two-particle current is quite different depending on whether the electrons are incident from the left or the right lead.