190 resultados para interglacials
Resumo:
Ice core evidence indicates that even though atmospheric CO2 concentrations did not exceed ~300 ppm at any point during the last 800 000 years, East Antarctica was at least ~3–4 °C warmer than preindustrial (CO2~280 ppm) in each of the last four interglacials. During the previous three interglacials, this anomalous warming was short lived (~3000 years) and apparently occurred before the completion of Northern Hemisphere deglaciation. Hereafter, we refer to these periods as "Warmer than Present Transients" (WPTs). We present a series of experiments to investigate the impact of deglacial meltwater on the Atlantic Meridional Overturning Circulation (AMOC) and Antarctic temperature. It is well known that a slowed AMOC would increase southern sea surface temperature (SST) through the bipolar seesaw and observational data suggests that the AMOC remained weak throughout the terminations preceding WPTs, strengthening rapidly at a time which coincides closely with peak Antarctic temperature. We present two 800 kyr transient simulations using the Intermediate Complexity model GENIE-1 which demonstrate that meltwater forcing generates transient southern warming that is consistent with the timing of WPTs, but is not sufficient (in this single parameterisation) to reproduce the magnitude of observed warmth. In order to investigate model and boundary condition uncertainty, we present three ensembles of transient GENIE-1 simulations across Termination II (135 000 to 124 000 BP) and three snapshot HadCM3 simulations at 130 000 BP. Only with consideration of the possible feedback of West Antarctic Ice Sheet (WAIS) retreat does it become possible to simulate the magnitude of observed warming.
Resumo:
Ice core evidence indicates that even though atmospheric CO2 concentrations did not exceed ~300 ppm at any point during the last 800 000 years, East Antarctica was at least ~3–4 °C warmer than preindustrial (CO2~280 ppm) in each of the last four interglacials. During the previous three interglacials, this anomalous warming was short lived (~3000 years) and apparently occurred before the completion of Northern Hemisphere deglaciation. Hereafter, we refer to these periods as "Warmer than Present Transients" (WPTs). We present a series of experiments to investigate the impact of deglacial meltwater on the Atlantic Meridional Overturning Circulation (AMOC) and Antarctic temperature. It is well known that a slowed AMOC would increase southern sea surface temperature (SST) through the bipolar seesaw and observational data suggests that the AMOC remained weak throughout the terminations preceding WPTs, strengthening rapidly at a time which coincides closely with peak Antarctic temperature. We present two 800 kyr transient simulations using the Intermediate Complexity model GENIE-1 which demonstrate that meltwater forcing generates transient southern warming that is consistent with the timing of WPTs, but is not sufficient (in this single parameterisation) to reproduce the magnitude of observed warmth. In order to investigate model and boundary condition uncertainty, we present three ensembles of transient GENIE-1 simulations across Termination II (135 000 to 124 000 BP) and three snapshot HadCM3 simulations at 130 000 BP. Only with consideration of the possible feedback of West Antarctic Ice Sheet (WAIS) retreat does it become possible to simulate the magnitude of observed warming.
Resumo:
Transient simulations are widely used in studying the past climate as they provide better comparison with any exisiting proxy data. However, multi-millennial transient simulations using coupled climate models are usually computationally very expensive. As a result several acceleration techniques are implemented when using numerical simulations to recreate past climate. In this study, we compare the results from transient simulations of the present and the last interglacial with and without acceleration of the orbital forcing, using the comprehensive coupled climate model CCSM3 (Community Climate System Model 3). Our study shows that in low-latitude regions, the simulation of long-term variations in interglacial surface climate is not significantly affected by the use of the acceleration technique (with an acceleration factor of 10) and hence, large-scale model-data comparison of surface variables is not hampered. However, in high-latitude regions where the surface climate has a direct connection to the deep ocean, e.g. in the Southern Ocean or the Nordic Seas, acceleration-induced biases in sea-surface temperature evolution may occur with potential influence on the dynamics of the overlying atmosphere. The data provided here are from both accelerated and non-accelerated runs as decadal mean values.
Resumo:
Interglacials, including the present (Holocene) period, are warm, low land ice extent (high sea level), end-members of glacial cycles. Based on a sea level definition, we identify eleven interglacials in the last 800,000years, a result that is robust to alternative definitions. Data compilations suggest that despite spatial heterogeneity, Marine Isotope Stages (MIS) 5e (last interglacial) and 11c (similar to 400ka ago) were globally strong (warm), while MIS 13a (similar to 500ka ago) was cool at many locations. A step change in strength of interglacials at 450ka is apparent only in atmospheric CO2 and in Antarctic and deep ocean temperature. The onset of an interglacial (glacial termination) seems to require a reducing precession parameter (increasing Northern Hemisphere summer insolation), but this condition alone is insufficient. Terminations involve rapid, nonlinear, reactions of ice volume, CO2, and temperature to external astronomical forcing. The precise timing of events may be modulated by millennial-scale climate change that can lead to a contrasting timing of maximum interglacial intensity in each hemisphere. A variety of temporal trends is observed, such that maxima in the main records are observed either early or late in different interglacials. The end of an interglacial (glacial inception) is a slower process involving a global sequence of changes. Interglacials have been typically 10-30ka long. The combination of minimal reduction in northern summer insolation over the next few orbital cycles, owing to low eccentricity, and high atmospheric greenhouse gas concentrations implies that the next glacial inception is many tens of millennia in the future.
Resumo:
Nisäkkäiden levinneisyyteen, niiden morfologisiin ja ekologisiin piirteisiin vaikuttavat ympäristön sekä lyhyet että pitkäkestoiset muutokset, etenkin ilmaston ja kasvillisuuden vaihtelut. Työssä tutkittiin nisäkkäiden sopeutumista ilmastonmuutoksiin Euraasiassa viimeisen 24 miljoonan vuoden aikana. Tutkimuksessa keskityttiin varsinkin viimeiseen kahteen miljoonaan vuoteen, jonka aikana ilmasto muuttui voimakkaasti ja ihmisen toiminta alkoi tulla merkittäväksi. Tämän takia on usein vaikea erottaa, kummasta em. seikasta jonkin nisäkäslajin sukupuutto tai häviäminen alueelta johtui. Aineistona käytettiin laajaa venäjänkielistä kirjallisuutta, josta löytyvät tiedot ovat kääntämättöminä jääneet aiemmin länsimaisen tutkimuksen ulkopuolelle. Työssä käytettiin myös NOW-tietokantaa, jossa on fossiilisten nisäkkäiden löytöpaikat sekä niiden iät.
Resumo:
The author reviews the stratigraphic diatom profile of Cumbrian lakes since the last glaciation. Knowledge of both present and previous interglacials suggests that a natural cycle of change is imposed on all lakes. The nature of inwashed material is dependant on climatic and natural soilcycles and this affects the water quality and sensitive aquatic biota. Anthropogenic effects are superimposed upon this with forest clearance and pollution. Whilst some Cumbrian diatom profiles extend over the entire post glacial, others cover only detailed sections relating to particular problems. Causes and effect of recent changes in lakes can be studied using indicator species but palaeocology contributes greatly to understanding of long term changes.
Resumo:
Chemical weathering intensity of loess deposits is largely determined by three factors: chemical weathering in source regions, grain size and post-depositional weathering. The third factor is influenced by climatic conditions such as precipitation and temperature, and the dust sedimentation rate in the area of deposition. Previous studies have shown that the (CaO+MgO+Na2O)/TiO2 ratio of decarbonated residue from loess is independent of grain size changes and thus is a reliable proxy for chemical weathering. However, the validity of (CaO+MgO+Na2O)/TiO2 to describe changes in monsoon intensity requires further study. In this study, 48 sections over the last glacial-interglacial cycle on the Chinese Loess Plateau were sampled, and the major elemental concentrations of 248 decarbonated residue samples were measured to investigate the utility of the (CaO+MgO+Na2O)/TiO2 ratio as a proxy for changes in monsoon intensity. Results show that the (CaO+MgO+Na2O)/TiO2 ratio, is relatively more sensitive to climate change than other indexes independent of grain size, and is not affected substantially by sedimentation rate. Assuming the weathering regime is relatively stable in the loess source regions, the (CaO+MgO+Na2O)/TiO2 ratio is a reliable proxy for the intensity of summer monsoon. A decreasing (CaO+MgO+Na2O)/TiO2 ratio from northwest to southeast both in loess and paleosols indicates that the Chinese Loess Plateau is in the control of the East Asian summer monsoon during both interglacial and glacial times. In addition, the spatial distributions of (CaO+MgO+Na2O)/TiO2 ratios show a greater north-south gradient during interglacial periods than during glacial periods. This may suggest that the spatial precipitation gradient, controlled by the summer monsoon, is steeper during interglacials than in glacials.
Resumo:
The loess-paleosol sequences in China are among the best continental records of paleoclimate changes. Although numerous sedimentological and geochemical studies have contributed greatly to the understanding of past climate changes during this period, it is still necessary to decipher more details through investigating these sequences using various approaches including biological analyses. In this study, we analyze the mollusk fossil assemblages preserved in the upper part of the Xifeng section, from the fifth loess layer (L5) to the Holocene soil (S0), with the sampling interval of 10 cm. The main results and conclusions obtained are as follows: 1. A continuous terrestrial mollusk fossil record, covering the past 500 ka, has been obtained from the Xifeng loess-paleosol sequence, which provides important biological data for the study of paleoenvironmental changes in the Loess Plateau and its comparison with marine record during this period. A total of 475 mollusk assemblages were studied, and twenty-one species have been identified among the 210,000 mollusk individuals counted. Among these species, most have modern representatives and are found in previous terrestrial mollusk studies of Chinese loess-paleosol sequences. Thus, they can be grouped into cold-aridiphilous, thermo-humidiphilous, oriental, and cool-humidiphilous ecological groups, as defined by previous studies. 2. Comparison of mollusk assemblages between the last five glacials and four interglacials and Holocene shows very different climate conditions. The warmest period occurred at MIS 11, MIS 5e, and Holocene, respectively. The coldest period is the Last Glacial Maximam, rather than the MIS 12. 3. Our mollusk record provides insight into the climate conditions in the Loess Plateau during the MIS 11, interpreted as the closest analog to the present interglacial. S4 paleosol, equivalent of MIS 11, developed under two major different climate regimes: ranging from the very warm–humid early phase to the mild-cool late interval. Furthermore, a cooling spell has been documented at the interglacial optimum, reflecting unstable climate conditions. The early warm–humid conditions lasted over 30 ka, supporting that MIS 11 is a unique long interglacial in the Quaternary climate history. 4. Comparison of MIS 11 and Holocene climates based on the mollusk species compositions indicates major differences. The climate at the early part of MIS 11 was warmer and more humid than during the Holocene optimum period, but the conditions during the late part of MIS 11 were similar to or cooler than late Holocene. Our study indicates that the extent of warming during the Holocene might be significantly less than the conditions that prevailed during the early part of MIS 11 interglacial period. 5. Two strong summer monsoon events were observed during the MIS 12 and MIS 10. They correspond to the maximam values of insolation gradient between low and high latitudes, suggesting a causal linkage. 6. Our study, combined with the previously investigated Luochuan land snail record, reveals that the climate in the Loess Plateau during MIS 3 experienced three stages: relatively warm, humid climate prevailed during MIS 3c, relatively cold, dry climate during MIS 3b, and relatively warm-humid period during MIS 3a. Climate at this time fluctuated frequently in Luochuan, and changed from warm-cool to cold-dry in Xifeng. Our results reveal that the relatively warm-humid climate during MIS 3c may be resulted from an increasing insolation gradient controlled by obliquity. Our result also reveals that obvious regional difference existed in the Loess Plateau during MIS 3. A greater climate gradient occurred during this time compared with today’s climate pattern in the Loess Plateau.
Resumo:
The surface of the Earth is continuously undergoing changes as a result of weathering-erosion, plate tectonics and volcanic processes. Continental weathering-erosion with its complex rock-water interactions is the central process of global biochemical cycling of elements, and affects the long-term ocean atmosphere budget of carbon dioxide both through the consumption of carbonic acid during silicate weathering and through changes in the weathering and burial rates of organic carbon. Rates of the weathering-erosion depend on a variety of factors, in particular rock properties and chemical composition, climate (especially rainfall), structure, and elevation. They are quite variable on a regional scale. Thus, environmental changes in a region could be indicated by the history of weathering-erosion in the region. Recent attention has focused on increased silicate weathering of tectonically uplifted areas in the India-Asia collision zone as a possible cause for falling atmospheric CO_2 levels in the Cenozoic era. The wind blown dust deposits in the Loess Plateau is derived from the arid and semiarid regions in northwestern China, in turn, where the deposits have been derived from the Qinghai-Xizang Plateau and the high mountains around. Therefore, geochemistry of the wind blown loess-paleosol and red clay sequences may provide insight both to paleoenvironmental changes on the Loess Plateau, and to the uplift and weathering-erosion histories of the Qinghai-Xizang Plateau. In this paper, uranium-thorium series nuclides and cosmogenic ~(10)Be have been employed as tracers of weathering intensities and histories of the dust sediments in the Loess Plateau. Major elements, such as Na, Al, Fe etc., are also used to estimate degree of chemical alteration of the dust sediments and to rebuild the history of weathering on the Loess Plateau. First of all, using a low-level HPGe γ-ray detector, we measured U and Th series nuclides in 170 loess and paleosol samples from five sites in the Loess Plateau, going back 2.6 Ma. The results show that ~(238)U activities are disequilibrium with its daughter nuclide ~(230)Th in young loess-paleosol sequence, indicating that weathering was happened both in dust deposition site and in dust source regions. Using concentrations of ~(238)U and ~(232)Th in the samples, we estimated the amounts of ~(238)U leached out of from paleosols due to weathering. Further, based on analyses of ~(230)Th in paleosols deposited in the past ca. 140 ka, we determined when the paleosols weathered in the source regions. We conclude that most of the weathering in the dust-source regions may have occurred during the interglacials before dust deposition.