479 resultados para interespecific bud
Resumo:
O presente estudo teve por objetivo avaliar o pegamento e o crescimento inicial de enxertos do pessegueiro 'Aurora-1' em clones de umezeiro (Prunus mume Sieb. et Zucc.) e 'Okinawa' [Prunus persica (L.) Batsch] propagados por estacas herbáceas. Realizaram-se dois experimentos, adotando-se a enxertia de borbulhia por escudo (março) e borbulhia por escudo modificada (julho). Com os resultados obtidos, pode-se concluir que é viável a realização da enxertia do 'Aurora-1' nos Clones 05; 10 e 15 de umezeiro e no 'Okinawa', tanto em março quanto em julho, com as metodologias utilizadas. O 'Okinawa' induz crescimento mais rápido ao enxerto, de forma que o ponto máximo do comprimento é atingido em tempo menor.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
MADS-box genes similar to Arabidopsis SHORT VEGETATIVE PHASE (SVP) have been implicated in the regulation of flowering in annual species and bud dormancy in perennial species. Kiwifruit (Actinidia spp.) are woody perennial vines where bud dormancy and out-growth affect flower development. To determine the role of SVP-like genes in dormancy and flowering of kiwifruit, four MADS-box genes with homology to Arabidopsis SVP, designated SVP1, SVP2, SVP3, and SVP4, have been identified and analysed in kiwifruit and functionally characterized in Arabidopsis. Phylogenetic analysis indicate that these genes fall into different sub-clades within the SVP-like gene group, suggesting distinct functions. Expression was generally confined to vegetative tissues, and increased transcript accumulation in shoot buds over the winter period suggests a role for these genes in bud dormancy. Down-regulation before flower differentiation indicate possible roles as floral repressors. Over-expression and complementation studies in Arabidopsis resulted in a range of floral reversion phenotypes arising from interactions with Arabidopsis MADS-box proteins, but only SVP1 and SVP3 were able to complement the svp mutant. These results suggest that the kiwifruit SVP-like genes may have distinct roles during bud dormancy and flowering.
Resumo:
Excised shoot tips of Cuscuta reflexa Roxb. (dodder), a rootless and leafless angiospermic plant parasite, were cultured in vitro for the study of the control of lateral bud development by the apex. In a chemically defined medium lacking hormones, the basal bud alone developed into a shoot. The addition of coconut milk to the growth medium induced the activation of multiple lateral buds, but only a single bud developed further into a shoot. The decapitation of this shoot induced the development of another shoot and the process could be repeated. This showed the controlling effect of the apex in correlative control of bud development. Application of indole-3-acetic acid to the shoot tip explant delayed the development of the lateral bud. Gibberellic acid A3 induced a marked elongation growth of the explant and reinforced apical dominance. The direct application of cytokinin to an inhibited bud relieved it from apical dominance. A basipetally decreasing concentration gradient of auxin may prevail at the nodes. Bud outgrowth is probably stimulated by cytokinin produced locally in the bud.
Resumo:
The influence of insect attack on bud fall and subsequent poor flowering in cultivated hibiscus (Hibiscus rosa-sinensis) was studied in cages and in the field in southern Queensland. Three species of Hemiptera (most importantly Aulacosternum nigrorubrum but also Nezara viridula and Tectocoris diophthalmus) caused some bud fall in 2 plantations studied. Adults of Macroura concolor suppressed flowering for long periods in spring and summer. Data from white funnel traps and counts in flowers showed that M. concolor was most active in these seasons. Methiocarb (0.75 g a.i./litre) reduced beetle numbers and increased flowering. When 15 or more adults of M. concolor occurred per bud (or flower) most buds fell and few flowers were produced, but when beetles declined to 10 or fewer many buds survived and widespread flowering occurred. Larvae fed in fallen buds and flowers and the mean duration of development of the combined immature stages was 14 days at 26 deg C. The preference of adults of M. concolor for pale coloured flowers was examined. Hibiscus plants produced most buds from December to June with lower numbers in winter and spring (July to November). Bud production in spring and early summer (September-December) varied greatly and probably contributed to poor flowering, however, even when large numbers of buds occurred very few flowers were produced because of the activities of M. concolor.
Resumo:
Groundnut bud necrosis virus (GBNV), a member of genus Tospovirus in the family Bunyaviridae, infects a large number of leguminosae and solanaceae plants in India. With a view to elucidate the function of nonstructural protein, NSs encoded by the small RNA genome (S RNA), the NSs protein of GBNV-tomato (Karnataka) [1] was over-expressed in E.coli and purified by Ni-NTA chromatography. The purified rNSs protein exhibited an RNA stimulated NTPase activity. Further, this activity was metal ion dependent and was inhibited by adenosine 5' (beta, gamma imido) triphosphate, an ATP analog. The rNSs could also hydrolyze dATP.Interestingly, in addition to the NTPase and dATPase activities, the rNSs exhibited ATP independent 5' RNA/DNA phosphatase activity that was completely inhibited by AMP. The 5' alpha phosphate could be removed from ssDNA, ssRNA, dsDNA and dsRNA thus confirming that rNSs has a novel 5' alpha phosphatase activity. K189A mutation in the Walker motif A (GxxxxGKT) resulted in complete loss of ATPase activity, but the 5'phosphatase activity was unaffected. On the other hand, D159A mutation in the Walker motif B (DExx) resulted in partial loss of both the activities. These results demonstrate for the first time that NSs is a bifunctional enzyme, which could participate in viral movement, replication or in suppression of the host defense mechanism.
Resumo:
Groundnut bud necrosis virus belongs to the genus Tospovirus, infects a wide range of crop plants and causes severe losses. To understand the role of the nucleocapsid protein in the viral life cycle, the protein was overexpressed in E. coli and purified by Ni-NTA chromatography. The purified N protein was well folded and was predominantly alpha-helical. Deletion analysis revealed that the C-terminal unfolded region of the N protein was involved in RNA binding. Furthermore, the N protein could be phosphorylated in vitro by Nicotiana benthamiana plant sap and by purified recombinant kinases such as protein kinase CK2 and calcium-dependent protein kinase. This is the first report of phoshphorylation of a nucleocapsid protein in the family Bunyaviridae. The possible implications of the present findings for the viral life cycle are discussed.
Resumo:
Groundnut Bud Necrosis Virus (GBNV) is a tripartite ambisense RNA plant virus that belongs to serogroup IV of Tospovirus genus. Non-Structural protein-m (NSm), which functions as movement protein in tospoviruses, is encoded by the M RNA. In this communication, we demonstrate that despite the absence of any putative transmembrane domain, GBNV NSm associates with membranes when expressed in E. coli as well as in N. benthamiana. Incubation of refolded NSm with liposomes ranging in size from 200-250 nm resulted in changes in the secondary and tertiary structure of NSm. A similar behaviour was observed in the presence of anionic and zwitterionic detergents. Furthermore, the morphology of the liposomes was found to be modified in the presence of NSm. Deletion of coiled coil domain resulted in the inability of in planta expressed NSm to interact with membranes. Further, when the C-terminal coiled coil domain alone was expressed, it was found to be associated with membrane. These results demonstrate that NSm associates with membranes via the C-terminal coiled coil domain and such an association may be important for movement of viral RNA from cell to cell.
Resumo:
The nonstructural protein NSs, encoded by the S RNA of groundnut bud necrosis virus (GBNV) (genus Tospovirus, family Bunyaviridae) has earlier been shown to possess nucleic-acid-stimulated NTPase and 50 a phosphatase activity. ATP hydrolysis is an essential function of a true helicase. Therefore, NSs was tested for DNA helicase activity. The results demonstrated that GBNV NSs possesses bidirectional DNA helicase activity. An alanine mutation in the Walker A motif (K189A rNSs) decreased DNA helicase activity substantially, whereas a mutation in the Walker B motif resulted in a marginal decrease in this activity. The parallel loss of the helicase and ATPase activity in the K189A mutant confirms that NSs acts as a non-canonical DNA helicase. Furthermore, both the wild-type and K189A NSs could function as RNA silencing suppressors, demonstrating that the suppressor activity of NSs is independent of its helicase or ATPase activity. This is the first report of a true helicase from a negative-sense RNA virus.