991 resultados para interconnected systems


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reactive-optimisation procedures are responsible for the minimisation of online power losses in interconnected systems. These procedures are performed separately at each control centre and involve external network representations. If total losses can be minimised by the implementation of calculated local control actions, the entire system benefits economically, but such control actions generally result in a certain degree of inaccuracy, owing to errors in the modelling of the external system. Since these errors are inevitable, they must at least be maintained within tolerable limits by external-modelling approaches. Care must be taken to avoid unrealistic loss minimisation, as the local-control actions adopted can lead the system to points of operation which will be less economical for the interconnected system as a whole. The evaluation of the economic impact of the external modelling during reactive-optimisation procedures in interconnected systems, in terms of both the amount of losses and constraint violations, becomes important in this context. In the paper, an analytical approach is proposed for such an evaluation. Case studies using data from the Brazilian South-Southeast system (810 buses) have been carried out to compare two different external-modelling approaches, both derived from the equivalent-optimal-power-flow (EOPF) model. Results obtained show that, depending on the external-model representation adopted, the loss representation can be flawed. Results also suggest some modelling features that should be adopted in the EOPF model to enhance the economy of the overall system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Includes bibliography

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we present a solution for building a better strategy to take part in external electricity markets. For an optimal strategy development, both the internal system costs as well as the future values of the series of electricity prices in external markets need to be known. But in practice, the real problems that must be faced are that both future electricity prices and costs are unknown. Thus, the first ones must be modeled and forecasted and the costs must be calculated. Our methodology for building an optimal strategy consists of three steps: The first step is modeling and forecasting market prices in external systems. The second step is the cost calculation on internal system taking into account the expected prices in the first step. The third step is based on the results of the previous steps, and consists of preparing the bids for external markets. The main goal is to reduce consumers' costs unlike many others that are oriented to increase GenCo's profits.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper considers the design of reduced-order distributed functional observers for interconnected linear systems with the presence of time delays in the interconnections. Unlike observers which consider only the ideal non-delayed output information transfer, the proposed observer is capable of dealing with delayed output information from geographically separated subsystems. It is shown that by accepting measurement data from other subsystems, the conditions under which an observer exists can be made less conservative. Existence conditions, systematic and a straightforward procedure for the synthesis of the observers are given along with numerical examples illustrating the effectiveness and simplicity of the design algorithm.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper proposes a partially distributed functional observer scheme for a class of interconnected linear systems with very strong non-instantaneous subsystems interaction and with time delays in the local states and in the transmission of output information from the remote subsystems. A set of easily verifiable existence conditions is established and upon its satisfaction, simple distributed observers are designed using a straightforward design procedure. Simulation results of a numerical example are given to substantiate the feasibility of the approach.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This paper considers the design of state observers for interconnected time-delay systems using a coordinate transformation method. Through such a transformation, the system that has interconnection and state delays is metamorphosed into a new system that injects time-delay information into its input and output terms, before reintroducing them back into the latter system, effectively coupling the delay terms into the IO injection terms and eliminating the delay values from the state variables. Next, full-order and reduced-order observers are designed based on the transformed system. Finally, the observed states of the transformed system that correspond to the original system is used to deduce the estimates of the original system. A numerical example is provided of an interconnected time-delay system.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

His research contributes to the field of functional state estimation for interconnected time-delay systems. Through progressive improvements and refinements, these developed observer structures have practical application for industry and more widely in the engineering field.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A new successive displacement type load flow method is developed in this paper. This algorithm differs from the conventional Y-Bus based Gauss Seidel load flow in that the voltages at each bus is updated in every iteration based on the exact solution of the power balance equation at that node instead of an approximate solution used by the Gauss Seidel method. It turns out that this modified implementation translates into only a marginal improvement in convergence behaviour for obtaining load flow solutions of interconnected systems. However it is demonstrated that the new approach can be adapted with some additional refinements in order to develop an effective load flow solution technique for radial systems. Numerical results considering a number of systems-both interconnected and radial, are provided to validate the proposed approach.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This article is concerned with the problem of state observer for complex large-scale systems with unknown time-varying delayed interactions. The class of large-scale interconnected systems under consideration is subjected to interval time-varying delays and nonlinear perturbations. By introducing a set of argumented Lyapunov–Krasovskii functionals and using a new bounding estimation technique, novel delay-dependent conditions for existence of state observers with guaranteed exponential stability are derived in terms of linear matrix inequalities (LMIs). In our design approach, the set of full-order Luenberger-type state observers are systematically derived via the use of an efficient LMI-based algorithm. Numerical examples are given to illustrate the effectiveness of the result

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper deals with the practical aspects of reduced-order distributed functional state observers design for interconnected linear systems subject to time delays in the interconnections. Contrary to some estimation strategies which only take the ideal instantaneous output information into account, the proposed scheme incorporates output information that is inevitably encountered with time delays in the course of its transmission from the distanced subsystems. It is proved that such estimator possesses less restrictive existence conditions with the acceptance of measurement data from other interrelated subsystems. Upon the satisfaction of the established existence conditions, it will be demonstrated through a simple design procedure and simulation results that a feasible observer can be realized for a given numerical system.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The concept of smartness of energy efficient products and systems from a business perspective has been investigated by several authors. The problem of understanding, designing, engineering and governing these technologies requires new concepts. The emergence of these modern technologies causes a myriad of interconnected systems, which are working together to satisfy the necessities of modern life. The problem of understanding, designing, engineering, and governing these technologies requires new concepts. Development of System of System Engineering (SoSE) is an attempt by the systems engineering and science community to fulfill this requirement.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

El propósito de esta tesis es presentar una metodología para realizar análisis de la dinámica en pequeña señal y el comportamiento de sistemas de alimentación distribuidos de corriente continua (CC), formados por módulos comerciales. Para ello se hace uso de un método sencillo que indica los márgenes de estabilidad menos conservadores posibles mediante un solo número. Este índice es calculado en cada una de las interfaces que componen el sistema y puede usarse para obtener un índice global que indica la estabilidad del sistema global. De esta manera se posibilita la comparación de sistemas de alimentación distribuidos en términos de robustez. La interconexión de convertidores CC-CC entre ellos y con los filtros EMI necesarios puede originar interacciones no deseadas que dan lugar a la degradación del comportamiento de los convertidores, haciendo el sistema más propenso a inestabilidades. Esta diferencia en el comportamiento se debe a interacciones entre las impedancias de los diversos elementos del sistema. En la mayoría de los casos, los sistemas de alimentación distribuida están formados por módulos comerciales cuya estructura interna es desconocida. Por ello los análisis presentados en esta tesis se basan en medidas de la respuesta en frecuencia del convertidor que pueden realizarse desde los terminales de entrada y salida del mismo. Utilizando las medidas de las impedancias de entrada y salida de los elementos del sistema, se puede construir una función de sensibilidad que proporciona los márgenes de estabilidad de las diferentes interfaces. En esta tesis se utiliza el concepto del valor máximo de la función de sensibilidad (MPC por sus siglas en inglés) para indicar los márgenes de estabilidad como un único número. Una vez que la estabilidad de todas las interfaces del sistema se han evaluado individualmente, los índices obtenidos pueden combinarse para obtener un único número con el que comparar la estabilidad de diferentes sistemas. Igualmente se han analizado las posibles interacciones en la entrada y la salida de los convertidores CC-CC, obteniéndose expresiones analíticas con las que describir en detalle los acoplamientos generados en el sistema. Los estudios analíticos realizados se han validado experimentalmente a lo largo de la tesis. El análisis presentado en esta tesis se culmina con la obtención de un índice que condensa los márgenes de estabilidad menos conservativos. También se demuestra que la robustez del sistema está asegurada si las impedancias utilizadas en la función de sensibilidad se obtienen justamente en la entrada o la salida del subsistema que está siendo analizado. Por otra parte, la tesis presenta un conjunto de parámetros internos asimilados a impedancias, junto con sus expresiones analíticas, que permiten una explicación detallada de las interacciones en el sistema. Dichas expresiones analíticas pueden obtenerse bien mediante las funciones de transferencia analíticas si se conoce la estructura interna, o utilizando medidas en frecuencia o identificación de las mismas a través de la respuesta temporal del convertidor. De acuerdo a las metodologías presentadas en esta tesis se puede predecir la estabilidad y el comportamiento de sistemas compuestos básicamente por convertidores CC-CC y filtros, cuya estructura interna es desconocida. La predicción se basa en un índice que condensa la información de los márgenes de estabilidad y que permite la obtención de un indicador de la estabilidad global de todo el sistema, permitiendo la comparación de la estabilidad de diferentes arquitecturas de sistemas de alimentación distribuidos. ABSTRACT The purpose of this thesis is to present dynamic small-signal stability and performance analysis methodology for dc-distributed systems consisting of commercial power modules. Furthermore, the objective is to introduce simple method to state the least conservative margins for robust stability as a single number. In addition, an index characterizing the overall system stability is obtained, based on which different dc-distributed systems can be compared in terms of robustness. The interconnected systems are prone to impedance-based interactions which might lead to transient-performance degradation or even instability. These systems typically are constructed using commercial converters with unknown internal structure. Therefore, the analysis presented throughout this thesis is based on frequency responses measurable from the input and output terminals. The stability margins are stated utilizing a concept of maximum peak criteria, derived from the behavior of impedance-based sensitivity function that provides a single number to state robust stability. Using this concept, the stability information at every system interface is combined to a meaningful number to state the average robustness of the system. In addition, theoretical formulas are extracted to assess source and load side interactions in order to describe detailed couplings within the system. The presented theoretical analysis methodologies are experimentally validated throughout the thesis. In this thesis, according to the presented analysis, the least conservative stability margins are provided as a single number guaranteeing robustness. It is also shown that within the interconnected system the robust stability is ensured only if the impedance-based minor-loop gain is determined at the very input or output of each subsystem. Moreover, a complete set of impedance-type internal parameters as well as the formulas according to which the interaction sensitivity can be fully explained and analyzed, is provided. The given formulation can be utilized equally either based on measured frequency responses, time-domain identified internal parameters or extracted analytic transfer functions. Based on the analysis methodologies presented in this thesis, the stability and performance of interconnected systems consisting of converters with unknown internal structure, can be predicted. Moreover, the provided concept to assess the least conservative stability margins enables to obtain an index to state the overall robust stability of distributed power architecture and thus to compare different systems in terms of stability.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Wind generation in highly interconnected power networks creates local and centralised stability issues based on their proximity to conventional synchronous generators and load centres. This paper examines the large disturbance stability issues (i.e. rotor angle and voltage stability) in power networks with geographically distributed wind resources in the context of a number of dispatch scenarios based on profiles of historical wind generation for a real power network. Stability issues have been analysed using novel stability indices developed from dynamic characteristics of wind generation. The results of this study show that localised stability issues worsen when significant penetration of both conventional and wind generation is present due to their non-complementary characteristics. In contrast, network stability improves when either high penetration of wind and synchronous generation is present in the network. Therefore, network regions can be clustered into two distinct stability groups (i.e. superior stability and inferior stability regions). Network stability improves when a voltage control strategy is implemented at wind farms, however both stability clusters remain unchanged irrespective of change in the control strategy. Moreover, this study has shown that the enhanced fault ride-through (FRT) strategy for wind farms can improve both voltage and rotor angle stability locally, but only a marginal improvement is evident in neighbouring regions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this paper, the problem of distributed functional state observer design for a class of large-scale interconnected systems in the presence of heterogeneous time-varying delays in the interconnections and the local state vectors is considered. The resulting observer scheme is suitable for strongly coupled subsystems with multiple time-varying delays, and is shown to give better results for systems with very strong interconnections while only some mild existence conditions are imposed. A set of existence conditions are derived along with a computationally simple observer constructive procedure. Based on the Lyapunov-Krasovskii functional method (LKF) in the framework of linear matrix inequalities (LMIs), delay-dependent conditions are derived to obtain the observer parameters ensuring the exponential convergence of the observer error dynamics. The effectiveness of the obtained results is illustrated and tested through a numerical example of a three-area interconnected system.