5 resultados para interactomics
Resumo:
Neks are serine-threonine kinases that are similar to NIMA, a protein found in Aspergillus nidulans which is essential for cell division. In humans there are eleven Neks which are involved in different biological functions besides the cell cycle control. Nek4 is one of the largest members of the Nek family and has been related to the primary cilia formation and in DNA damage response. However, its substrates and interaction partners are still unknown. In an attempt to better understand the role of Nek4, we performed an interactomics study to find new biological processes in which Nek4 is involved. We also described a novel Nek4 isoform which lacks a region of 46 amino acids derived from an insertion of an Alu sequence and showed the interactomics profile of these two Nek4 proteins. Isoform 1 and isoform 2 of Nek4 were expressed in human cells and after an immunoprecipitation followed by mass spectrometry, 474 interacting proteins were identified for isoform 1 and 149 for isoform 2 of Nek4. About 68% of isoform 2 potential interactors (102 proteins) are common between the two Nek4 isoforms. Our results reinforce Nek4 involvement in the DNA damage response, cilia maintenance and microtubule stabilization, and raise the possibility of new functional contexts, including apoptosis signaling, stress response, translation, protein quality control and, most intriguingly, RNA splicing. We show for the first time an unexpected difference between both Nek4 isoforms in RNA splicing control. Among the interacting partners, we found important proteins such as ANT3, Whirlin, PCNA, 14-3-3ε, SRSF1, SRSF2, SRPK1 and hNRNPs proteins. This study provides new insights into Nek4 functions, identifying new interaction partners and further suggests an interesting difference between isoform 1 and isoform 2 of this kinase. Nek4 isoform 1 may have similar roles compared to other Neks and these roles are not all preserved in isoform 2. Besides, in some processes, both isoforms showed opposite effects, indicating a possible fine controlled regulation.
Resumo:
La compréhension de processus biologiques complexes requiert des approches expérimentales et informatiques sophistiquées. Les récents progrès dans le domaine des stratégies génomiques fonctionnelles mettent dorénavant à notre disposition de puissants outils de collecte de données sur l’interconnectivité des gènes, des protéines et des petites molécules, dans le but d’étudier les principes organisationnels de leurs réseaux cellulaires. L’intégration de ces connaissances au sein d’un cadre de référence en biologie systémique permettrait la prédiction de nouvelles fonctions de gènes qui demeurent non caractérisées à ce jour. Afin de réaliser de telles prédictions à l’échelle génomique chez la levure Saccharomyces cerevisiae, nous avons développé une stratégie innovatrice qui combine le criblage interactomique à haut débit des interactions protéines-protéines, la prédiction de la fonction des gènes in silico ainsi que la validation de ces prédictions avec la lipidomique à haut débit. D’abord, nous avons exécuté un dépistage à grande échelle des interactions protéines-protéines à l’aide de la complémentation de fragments protéiques. Cette méthode a permis de déceler des interactions in vivo entre les protéines exprimées par leurs promoteurs naturels. De plus, aucun biais lié aux interactions des membranes n’a pu être mis en évidence avec cette méthode, comparativement aux autres techniques existantes qui décèlent les interactions protéines-protéines. Conséquemment, nous avons découvert plusieurs nouvelles interactions et nous avons augmenté la couverture d’un interactome d’homéostasie lipidique dont la compréhension demeure encore incomplète à ce jour. Par la suite, nous avons appliqué un algorithme d’apprentissage afin d’identifier huit gènes non caractérisés ayant un rôle potentiel dans le métabolisme des lipides. Finalement, nous avons étudié si ces gènes et un groupe de régulateurs transcriptionnels distincts, non préalablement impliqués avec les lipides, avaient un rôle dans l’homéostasie des lipides. Dans ce but, nous avons analysé les lipidomes des délétions mutantes de gènes sélectionnés. Afin d’examiner une grande quantité de souches, nous avons développé une plateforme à haut débit pour le criblage lipidomique à contenu élevé des bibliothèques de levures mutantes. Cette plateforme consiste en la spectrométrie de masse à haute resolution Orbitrap et en un cadre de traitement des données dédié et supportant le phénotypage des lipides de centaines de mutations de Saccharomyces cerevisiae. Les méthodes expérimentales en lipidomiques ont confirmé les prédictions fonctionnelles en démontrant certaines différences au sein des phénotypes métaboliques lipidiques des délétions mutantes ayant une absence des gènes YBR141C et YJR015W, connus pour leur implication dans le métabolisme des lipides. Une altération du phénotype lipidique a également été observé pour une délétion mutante du facteur de transcription KAR4 qui n’avait pas été auparavant lié au métabolisme lipidique. Tous ces résultats démontrent qu’un processus qui intègre l’acquisition de nouvelles interactions moléculaires, la prédiction informatique des fonctions des gènes et une plateforme lipidomique innovatrice à haut débit , constitue un ajout important aux méthodologies existantes en biologie systémique. Les développements en méthodologies génomiques fonctionnelles et en technologies lipidomiques fournissent donc de nouveaux moyens pour étudier les réseaux biologiques des eucaryotes supérieurs, incluant les mammifères. Par conséquent, le stratégie présenté ici détient un potentiel d’application au sein d’organismes plus complexes.
Resumo:
A implementação da espectrometria de massa (MS) para as análises de peptídeos (MS) e de aminoácidos (MS em tandem ou MS/MS) tornou possível a identificação de centenas de proteínas em experimentos únicos. Uma grande variedade de estratégias está disponível atualmente para o fracionamento e a purificação de amostras, a identificação de proteínas, a quantificação, a análise de modificações pós-traducionais (MPT's) e os estudos de interação. Dessa forma, a proteômica abre novas perspectivas na biologia de plantas com ênfase nos estudos de variabilidade genética, estresses fisiológicos e desenvolvimento de plantas.
Resumo:
Two genes with related functions in RNA biogenesis were recently reported in patients with familial ALS: the FUS/TLS gene at the ALS6 locus and the TARDBP/TDP-43 gene at the ALS10 locus [1, 2]. FUS has been implicated to function in several steps of gene expression, including transcription regulation [3], RNA splicing [4, 5], mRNA transport in neurons [6] and, interestingly, in microRNA (miRNA) processing [7]. The goal of this project is to identify the molecular mechanisms leading to the development of FUS mutations-associated ALS. Specifically, we want to test the hypothesis that these FUS mutations misregulate miRNA levels that in turn affect the expression of genes critical for motor neuron survival. In addition we want to test whether misregulation of the miRNA profile is a common feature in ALS. We have performed immunoprecipitations from total extracts of 293T cells expressing FLAG-tagged FUS to characterize its interactome by mass spectrometry. This proteomic study not only revealed a strong interaction of FUS with splicing factors, but shows that FUS might be involved in many, quite different pathways. To map which parts of the FUS protein contribute to the interaction with splicing factors, we have performed a set of experiments with a series of missense and deletion mutants. With this approach, we will not only gain information on the binding partners of FUS along with a map of the required domains for the interactions, but it will also help to unravel whether certain ALS-associated FUS mutations lead to a loss or gain of function due to gain or loss of interactors. Additionally, we have performed quantitative interactomics using SILAC to identify interactome differences of ALS-associated FUS mutants. To this end we have performed immunoprecipitations of total extract from 293T cells, stably transduced with constructs expressing wild-type FUS-FLAG as well as three different ALS-associated mutants (G156E, R244C, P525L). First results indicate striking differences in the interactome with certain RNA binding proteins. We are now validating these candidates in order to reveal the importance of these differential interactions in the context of ALS.