1000 resultados para interactions électron-phonon
Resumo:
La présente thèse porte sur les limites de la théorie de la fonctionnelle de la densité et les moyens de surmonter celles-ci. Ces limites sont explorées dans le contexte d'une implémentation traditionnelle utilisant une base d'ondes planes. Dans un premier temps, les limites dans la taille des systèmes pouvant être simulés sont observées. Des méthodes de pointe pour surmonter ces dernières sont ensuite utilisées pour simuler des systèmes de taille nanométrique. En particulier, le greffage de molécules de bromophényle sur les nanotubes de carbone est étudié avec ces méthodes, étant donné l'impact substantiel que pourrait avoir une meilleure compréhension de ce procédé sur l'industrie de l'électronique. Dans un deuxième temps, les limites de précision de la théorie de la fonctionnelle de la densité sont explorées. Tout d'abord, une étude quantitative de l'incertitude de cette méthode pour le couplage électron-phonon est effectuée et révèle que celle-ci est substantiellement plus élevée que celle présumée dans la littérature. L'incertitude sur le couplage électron-phonon est ensuite explorée dans le cadre de la méthode G0W0 et cette dernière se révèle être une alternative substantiellement plus précise. Cette méthode présentant toutefois de sévères limitations dans la taille des systèmes traitables, différents moyens théoriques pour surmonter ces dernières sont développés et présentés dans cette thèse. La performance et la précision accrues de l'implémentation résultante laissent présager de nouvelles possibilités dans l'étude et la conception de certaines catégories de matériaux, dont les supraconducteurs, les polymères utiles en photovoltaïque organique, les semi-conducteurs, etc.
Resumo:
Les nanotubes de carbone et le graphène sont des nanostructures de carbone hybridé en sp2 dont les propriétés électriques et optiques soulèvent un intérêt considérable pour la conception d’une nouvelle génération de dispositifs électroniques et de matériaux actifs optiquement. Or, de nombreux défis demeurent avant leur mise en œuvre dans des procédés industriels à grande échelle. La chimie des matériaux, et spécialement la fonctionnalisation covalente, est une avenue privilégiée afin de résoudre les difficultés reliées à la mise en œuvre de ces nanostructures. La fonctionnalisation covalente a néanmoins pour effet de perturber la structure cristalline des nanostructures de carbone sp2 et, par conséquent, d’affecter non seulement lesdites propriétés électriques, mais aussi les propriétés optiques en émanant. Il est donc primordial de caractériser les effets des défauts et du désordre dans le but d’en comprendre les conséquences, mais aussi potentiellement d’en exploiter les retombées. Cette thèse traite des propriétés optiques dans l’infrarouge des nanotubes de carbone et du graphène, avec pour but de comprendre et d’expliquer les mécanismes fondamentaux à l’origine de la réponse optique dans l’infrarouge des nanostructures de carbone sp2. Soumise à des règles de sélection strictes, la spectroscopie infrarouge permet de mesurer la conductivité en courant alternatif à haute fréquence des matériaux, dans une gamme d’énergie correspondant aux vibrations moléculaires, aux modes de phonons et aux excitations électroniques de faible énergie. Notre méthode expérimentale consiste donc à explorer un espace de paramètres défini par les trois axes que sont i. la dimensionnalité du matériau, ii. le potentiel chimique et iii. le niveau de désordre, ce qui nous permet de dégager les diverses contributions aux propriétés optiques dans l’infrarouge des nanostructures de carbone sp2. Dans un premier temps, nous nous intéressons à la spectroscopie infrarouge des nanotubes de carbone monoparois sous l’effet tout d’abord du dopage et ensuite du niveau de désordre. Premièrement, nous amendons l’origine couramment acceptée du spectre vibrationnel des nanotubes de carbone monoparois. Par des expériences de dopage chimique contrôlé, nous démontrons en effet que les anomalies dans lespectre apparaissent grâce à des interactions électron-phonon. Le modèle de la résonance de Fano procure une explication phénoménologique aux observations. Ensuite, nous établissons l’existence d’états localisés induits par la fonctionnalisation covalente, ce qui se traduit optiquement par l’apparition d’une bande de résonance de polaritons plasmons de surface (nanoantenne) participant au pic de conductivité dans le térahertz. Le dosage du désordre dans des films de nanotubes de carbone permet d’observer l’évolution de la résonance des nanoantennes. Nous concluons donc à une segmentation effective des nanotubes par les greffons. Enfin, nous montrons que le désordre active des modes de phonons normalement interdits par les règles de sélection de la spectroscopie infrarouge. Les collisions élastiques sur les défauts donnent ainsi accès à des modes ayant des vecteurs d’onde non nuls. Dans une deuxième partie, nous focalisons sur les propriétés du graphène. Tout d’abord, nous démontrons une méthode d’électrogreffage qui permet de fonctionnaliser rapidement et à haute densité le graphène sans égard au substrat. Par la suite, nous utilisons l’électrogreffage pour faire la preuve que le désordre active aussi des anomalies dépendantes du potentiel chimique dans le spectre vibrationnel du graphène monocouche, des attributs absents du spectre d’un échantillon non fonctionnalisé. Afin d’expliquer le phénomène, nous présentons une théorie basée sur l’interaction de transitions optiques intrabandes, de modes de phonons et de collisions élastiques. Nous terminons par l’étude du spectre infrarouge du graphène comportant des îlots de bicouches, pour lequel nous proposons de revoir la nature du mécanisme de couplage à l’œuvre à la lumière de nos découvertes concernant le graphène monocouche.
Resumo:
Thèse réalisée en cotutelle avec l'Université Catholique de Louvain (Belgique)
Resumo:
Cette thèse traite de la structure électronique de supraconducteurs telle que déterminée par la théorie de la fonctionnelle de la densité. Une brève explication de cette théorie est faite dans l’introduction. Le modèle de Hubbard est présenté pour pallier à des problèmes de cette théorie face à certains matériaux, dont les cuprates. L’union de deux théories donne la DFT+U, une méthode permettant de bien représenter certains systèmes ayant des électrons fortement corrélés. Par la suite, un article traitant du couplage électron- phonon dans le supraconducteur NbC1−xNx est présenté. Les résultats illustrent bien le rôle de la surface de Fermi dans le mécanisme d’appariement électronique menant à la supraconductivité. Grâce à ces résultats, un modèle est développé qui permet d’expliquer comment la température de transition critique est influencée par le changement des fré- quences de vibration du cristal. Ensuite, des résultats de calcul d’oscillations quantiques obtenus par une analyse approfondie de surfaces de Fermi, permettant une comparaison directe avec des données expérimentales, sont présentés dans deux articles. Le premier traite d’un matériau dans la famille des pnictures de fer, le LaFe2P2. L’absence de su- praconductivité dans ce matériau s’explique par la différence entre sa surface de Fermi obtenue et celle du supraconducteur BaFe2As2. Le second article traite du matériau à fermions lourds, le YbCoIn5. Pour ce faire, une nouvelle méthode efficace de calcul des fréquences de Haas-van Alphen est développée. Finalement, un dernier article traitant du cuprate supraconducteur à haute température critique YBa2Cu3O6.5 est présenté. À l’aide de la DFT+U, le rôle de plusieurs ordres magnétiques sur la surface de Fermi est étudié. Ces résultats permettent de mieux comprendre les mesures d’oscillations quan- tiques mesurées dans ce matériau.
Resumo:
Cette thèse porte sur le calcul de structures électroniques dans les solides. À l'aide de la théorie de la fonctionnelle de densité, puis de la théorie des perturbations à N-corps, on cherche à calculer la structure de bandes des matériaux de façon aussi précise et efficace que possible. Dans un premier temps, les développements théoriques ayant mené à la théorie de la fonctionnelle de densité (DFT), puis aux équations de Hedin sont présentés. On montre que l'approximation GW constitue une méthode pratique pour calculer la self-énergie, dont les résultats améliorent l'accord de la structure de bandes avec l'expérience par rapport aux calculs DFT. On analyse ensuite la performance des calculs GW dans différents oxydes transparents, soit le ZnO, le SnO2 et le SiO2. Une attention particulière est portée aux modèles de pôle de plasmon, qui permettent d'accélérer grandement les calculs GW en modélisant la matrice diélectrique inverse. Parmi les différents modèles de pôle de plasmon existants, celui de Godby et Needs s'avère être celui qui reproduit le plus fidèlement le calcul complet de la matrice diélectrique inverse dans les matériaux étudiés. La seconde partie de la thèse se concentre sur l'interaction entre les vibrations des atomes du réseau cristallin et les états électroniques. Il est d'abord montré comment le couplage électron-phonon affecte la structure de bandes à température finie et à température nulle, ce qu'on nomme la renormalisation du point zéro (ZPR). On applique ensuite la méthode GW au calcul du couplage électron-phonon dans le diamant. Le ZPR s'avère être fortement amplifié par rapport aux calculs DFT lorsque les corrections GW sont appliquées, améliorant l'accord avec les observations expérimentales.
Resumo:
L’ablation laser de verres métalliques de CuxZr1−x (x = 0.33, 0.50 et 0.67) et d’un alliage métallique cristallin de CuZr2 dans la structure C11b a été étudiée par dynamique moléculaire (DM) combinée à un modèle à deux températures (TTM). Le seuil d’ablation (Fth) a été déterminé pour chacun des 4 échantillons et s'est avéré plus bas pour les échantillons plus riches en Cu étant donné que la cohésion du Cu est plus faible que celle du Zr dans tous les échantillons. Pour x=0.33, Fth est plus bas pour le cristal que pour l’amorphe car le couplage électron-phonon est plus faible dans ce dernier, ce qui implique que l’énergie est transférée plus lentement du système électronique vers le système ionique pour le a-CuZr2 que le c-CuZr2. La vitesse de l’onde de pression créée par l’impact du laser croît avec la fluence dans l’échantillon cristallin, contrairement aux échantillons amorphes dans lesquels sa vitesse moyenne est relativement constante avec la fluence. Ceci est expliqué par le fait que le module de cisaillement croît avec la pression pour le cristal, ce qui n’est pas le cas pour les verres métalliques étudiés. Finalement, la zone affectée par la chaleur (HAZ) a été étudiée via la profondeur de fusion et les déformations plastiques. La plus faible température de fusion des échantillons amorphes implique que la profondeur de fusion est plus importante dans ceux-ci que dans l’échantillon cristallin. Dans les verres métalliques, les déformations plastiques ont été identifiées sous forme de zones de transformation par cisaillement (STZ) qui diffusent et fusionnent à plus haute fluence. Aucune déformation plastique importante n’a été identifiée dans le c-CuZr2 mis à part de légères déformations près du front de fusion causées par les contraintes résiduelles. Ce travail a ainsi permis d’améliorer notre compréhension de l’ablation laser sur les verres métalliques et de l’étendue des dommages qu’elle peut entraîner.
Resumo:
Le graphène est une nanostructure de carbone hybridé sp2 dont les propriétés électroniques et optiques en font un matériau novateur avec un très large potentiel d’application. Cependant, la production à large échelle de ce matériau reste encore un défi et de nombreuses propriétés physiques et chimiques doivent être étudiées plus en profondeur pour mieux les exploiter. La fonctionnalisation covalente est une réaction chimique qui a un impact important dans l’étude de ces propriétés, car celle-ci a pour conséquence une perte de la structure cristalline des carbones sp2. Néanmoins, la réaction a été très peu explorée pour ce qui est du graphène déposé sur des surfaces, car la réactivité chimique de ce dernier est grandement dépendante de l’environnement chimique. Il est donc important d’étudier la fonctionnalisation de ce type de graphène pour bien comprendre à la fois la réactivité chimique et la modification des propriétés électroniques et optiques pour pouvoir exploiter les retombées. D’un autre côté, les bicouches de graphène sont connues pour avoir des propriétés très différentes comparées à la monocouche à cause d’un empilement des structures électroniques, mais la croissance contrôlée de ceux-ci est encore très difficile, car la cinétique de croissance n’est pas encore maîtrisée. Ainsi, ce mémoire de maîtrise va porter sur l’étude de la réactivité chimique du graphène à la fonctionnalisation covalente et de l’étude des propriétés optiques du graphène. Dans un premier temps, nous avons effectué des croissances de graphène en utilisant la technique de dépôt chimique en phase vapeur. Après avoir réussi à obtenir du graphène monocouche, nous faisons varier les paramètres de croissance et nous nous rendons compte que les bicouches apparaissent lorsque le gaz carboné nécessaire à la croissance reste présent durant l’étape de refroidissement. À partir de cette observation, nous proposons un modèle cinétique de croissance des bicouches. Ensuite, nous effectuons une étude approfondie de la fonctionnalisation du graphène monocouche et bicouche. Tout d’abord, nous démontrons qu’il y a une interaction avec le substrat qui inhibe grandement le greffage covalent sur la surface du graphène. Cet effet peut cependant être contré de plusieurs façons différentes : 1) en dopant chimiquement le graphène avec des molécules réductrices, il est possible de modifier le potentiel électrochimique afin de favoriser la réaction; 2) en utilisant un substrat affectant peu les propriétés électroniques du graphène; 3) en utilisant la méthode d’électrogreffage avec une cellule électrochimique, car elle permet une modulation contrôlée du potentiel électrochimique du graphène. De plus, nous nous rendons compte que la réactivité chimique des bicouches est moindre dû à la rigidité de structure due à l’interaction entre les couches. En dernier lieu, nous démontrons la pertinence de la spectroscopie infrarouge pour étudier l’effet de la fonctionnalisation et l’effet des bicouches sur les propriétés optiques du graphène. Nous réussissons à observer des bandes du graphène bicouche dans la région du moyen infrarouge qui dépendent du dopage. Normalement interdites selon les règles de sélection pour la monocouche, ces bandes apparaissent néanmoins lorsque fonctionnalisée et changent grandement en amplitude dépendamment des niveaux de dopage et de fonctionnalisation.
Resumo:
Le graphène est une nanostructure de carbone hybridé sp2 dont les propriétés électroniques et optiques en font un matériau novateur avec un très large potentiel d’application. Cependant, la production à large échelle de ce matériau reste encore un défi et de nombreuses propriétés physiques et chimiques doivent être étudiées plus en profondeur pour mieux les exploiter. La fonctionnalisation covalente est une réaction chimique qui a un impact important dans l’étude de ces propriétés, car celle-ci a pour conséquence une perte de la structure cristalline des carbones sp2. Néanmoins, la réaction a été très peu explorée pour ce qui est du graphène déposé sur des surfaces, car la réactivité chimique de ce dernier est grandement dépendante de l’environnement chimique. Il est donc important d’étudier la fonctionnalisation de ce type de graphène pour bien comprendre à la fois la réactivité chimique et la modification des propriétés électroniques et optiques pour pouvoir exploiter les retombées. D’un autre côté, les bicouches de graphène sont connues pour avoir des propriétés très différentes comparées à la monocouche à cause d’un empilement des structures électroniques, mais la croissance contrôlée de ceux-ci est encore très difficile, car la cinétique de croissance n’est pas encore maîtrisée. Ainsi, ce mémoire de maîtrise va porter sur l’étude de la réactivité chimique du graphène à la fonctionnalisation covalente et de l’étude des propriétés optiques du graphène. Dans un premier temps, nous avons effectué des croissances de graphène en utilisant la technique de dépôt chimique en phase vapeur. Après avoir réussi à obtenir du graphène monocouche, nous faisons varier les paramètres de croissance et nous nous rendons compte que les bicouches apparaissent lorsque le gaz carboné nécessaire à la croissance reste présent durant l’étape de refroidissement. À partir de cette observation, nous proposons un modèle cinétique de croissance des bicouches. Ensuite, nous effectuons une étude approfondie de la fonctionnalisation du graphène monocouche et bicouche. Tout d’abord, nous démontrons qu’il y a une interaction avec le substrat qui inhibe grandement le greffage covalent sur la surface du graphène. Cet effet peut cependant être contré de plusieurs façons différentes : 1) en dopant chimiquement le graphène avec des molécules réductrices, il est possible de modifier le potentiel électrochimique afin de favoriser la réaction; 2) en utilisant un substrat affectant peu les propriétés électroniques du graphène; 3) en utilisant la méthode d’électrogreffage avec une cellule électrochimique, car elle permet une modulation contrôlée du potentiel électrochimique du graphène. De plus, nous nous rendons compte que la réactivité chimique des bicouches est moindre dû à la rigidité de structure due à l’interaction entre les couches. En dernier lieu, nous démontrons la pertinence de la spectroscopie infrarouge pour étudier l’effet de la fonctionnalisation et l’effet des bicouches sur les propriétés optiques du graphène. Nous réussissons à observer des bandes du graphène bicouche dans la région du moyen infrarouge qui dépendent du dopage. Normalement interdites selon les règles de sélection pour la monocouche, ces bandes apparaissent néanmoins lorsque fonctionnalisée et changent grandement en amplitude dépendamment des niveaux de dopage et de fonctionnalisation.
Resumo:
Quantum dissipation and broadening mechanisms in Si-doped InGaN quantum dots are studied via the photoluminescence technique. It is found that the dissipative thermal bath that embeds the quantum dots plays an important role in the photon emission processes. Observed spontaneous emission spectra are modeled with the multimode Brownian oscillator model achieving an excellent agreement between experiment and theory for a wide temperature range. The dimensionless Huang-Rhys factor characterizing the strength of electron-LO-phonon coupling and damping constant accounting for the LO-phonon-bath interaction strength are found to be similar to 0.2 and 200 cm(-1), respectively, for the InGaN QDs. (c) 2006 American Institute of Physics.
Resumo:
We have carried out temperature- and pressure-dependent Raman and x-ray measurements on single crystals of Tb2Ti2O7. We attribute the observed anomalous temperature dependence of phonons to phonon-phonon anharmonic interactions. The quasiharmonic and anharmonic contributions to the temperature-dependent changes in phonon frequencies are estimated quantitatively using mode Grüneisen parameters derived from pressure-dependent Raman experiments and bulk modulus from high-pressure x-ray measurements. Further, our Raman and x-ray data suggest a subtle structural deformation of the pyrochlore lattice at ~9 GPa. We discuss possible implications of our results on the spin-liquid behavior of Tb2Ti2O7.
Resumo:
The Griffiths phase-like features and the spin-phonon coupling effects observed in Tb(2)NiMnO(6) are reported. The double perovskite compound crystallizes in monoclinic P2(1)/n space group and exhibits a magnetic phase transition at T(c) similar to 111 K as an abrupt change in magnetization. A negative deviation from ideal Curie-Weiss law exhibited by 1/chi(T) curves and less-than-unity susceptibility exponents from the power-law analysis of inverse susceptibility are reminiscent of Griffiths phase-like features. Arrott plots derived from magnetization isotherms support the inhomogeneous nature of magnetism in this material. The observed effects originate from antiferromagnetic interactions that arise from inherent disorder in the system. Raman scattering experiments display no magnetic-order-induced phonon renormalization below Tc in Tb(2)NiMnO(6), which is different from the results observed in other double perovskites and is correlated to the smaller size of the rare earth. The temperature evolution of full-width-at-half-maximum for the stretching mode at 645 cm(-1) presents an anomaly that coincides with the magnetic transition temperature and signals a close connection between magnetism and lattice in this material. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3671674]
Resumo:
Anomalous temperature dependence of Raman phonon wavenumbers attributed to phononphonon anharmonic interactions has been studied in two different families of pyrochlore titanates. We bring out the role of the ionic size of titanium and the inherent vacancies of pyrochlore in these anomalies by studying the effect of replacement of Ti4?+ by Zr4?+ in Sm2Ti2O7 and by stuffing Ho3?+ in place of Ti4?+ in Ho2Ti2O7 with appropriate oxygen stoichiometry. Our results show that an increase in the concentration of the larger ion, i.e. Zr4?+ or Ho3?+, reduces the phonon anomalies, thus implying a decrease in the phononphonon anharmonic interactions. In addition, we find signatures of coupling between a phonon and crystal field transition in Sm2Ti2O7, manifested as an unusual increase in the phonon intensity with increasing temperature. Copyright (c) 2011 John Wiley & Sons, Ltd.
Resumo:
Today our understanding of the vibrational thermodynamics of materials at low temperatures is emerging nicely, based on the harmonic model in which phonons are independent. At high temperatures, however, this understanding must accommodate how phonons interact with other phonons or with other excitations. We shall see that the phonon-phonon interactions give rise to interesting coupling problems, and essentially modify the equilibrium and non-equilibrium properties of materials, e.g., thermodynamic stability, heat capacity, optical properties and thermal transport of materials. Despite its great importance, to date the anharmonic lattice dynamics is poorly understood and most studies on lattice dynamics still rely on the harmonic or quasiharmonic models. There have been very few studies on the pure phonon anharmonicity and phonon-phonon interactions. The work presented in this thesis is devoted to the development of experimental and computational methods on this subject.
Modern inelastic scattering techniques with neutrons or photons are ideal for sorting out the anharmonic contribution. Analysis of the experimental data can generate vibrational spectra of the materials, i.e., their phonon densities of states or phonon dispersion relations. We obtained high quality data from laser Raman spectrometer, Fourier transform infrared spectrometer and inelastic neutron spectrometer. With accurate phonon spectra data, we obtained the energy shifts and lifetime broadenings of the interacting phonons, and the vibrational entropies of different materials. The understanding of them then relies on the development of the fundamental theories and the computational methods.
We developed an efficient post-processor for analyzing the anharmonic vibrations from the molecular dynamics (MD) calculations. Currently, most first principles methods are not capable of dealing with strong anharmonicity, because the interactions of phonons are ignored at finite temperatures. Our method adopts the Fourier transformed velocity autocorrelation method to handle the big data of time-dependent atomic velocities from MD calculations, and efficiently reconstructs the phonon DOS and phonon dispersion relations. Our calculations can reproduce the phonon frequency shifts and lifetime broadenings very well at various temperatures.
To understand non-harmonic interactions in a microscopic way, we have developed a numerical fitting method to analyze the decay channels of phonon-phonon interactions. Based on the quantum perturbation theory of many-body interactions, this method is used to calculate the three-phonon and four-phonon kinematics subject to the conservation of energy and momentum, taking into account the weight of phonon couplings. We can assess the strengths of phonon-phonon interactions of different channels and anharmonic orders with the calculated two-phonon DOS. This method, with high computational efficiency, is a promising direction to advance our understandings of non-harmonic lattice dynamics and thermal transport properties.
These experimental techniques and theoretical methods have been successfully performed in the study of anharmonic behaviors of metal oxides, including rutile and cuprite stuctures, and will be discussed in detail in Chapters 4 to 6. For example, for rutile titanium dioxide (TiO2), we found that the anomalous anharmonic behavior of the B1g mode can be explained by the volume effects on quasiharmonic force constants, and by the explicit cubic and quartic anharmonicity. For rutile tin dioxide (SnO2), the broadening of the B2g mode with temperature showed an unusual concave downwards curvature. This curvature was caused by a change with temperature in the number of down-conversion decay channels, originating with the wide band gap in the phonon dispersions. For silver oxide (Ag2O), strong anharmonic effects were found for both phonons and for the negative thermal expansion.