973 resultados para inter-area oscillations


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, a non-linear excitation controller using inverse filtering is proposed to damp inter-area oscillations. The proposed controller is based on determining generator flux value for the next sampling time which is obtained by maximising reduction rate of kinetic energy of the system after the fault. The desired flux for the next time interval is obtained using wide-area measurements and the equivalent area rotor angles and velocities are predicted using a non-linear Kalman filter. A supplementary control input for the excitation system, using inverse filtering approach, to track the desired flux is implemented. The inverse filtering approach ensures that the non-linearity introduced because of saturation is well compensated. The efficacy of the proposed controller with and without communication time delay is evaluated on different IEEE benchmark systems including Kundur's two area, Western System Coordinating Council three-area and 16-machine, 68-bus test systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes an application of a FACTS supplementary controller for damping of inter area oscillations in power systems. A fuzzy logic controller is designed to regulate a thyristor controlled series capacitor (TCSC) in a multimachine environment to produce additional damping in the system. Simultaneous application of the excitation controller and proposed controller is also investigated. Simulation studies have been done with different types of disturbances and the results are shown to be consistent with the expected performance of the supplementary controller.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wide-Area Measurement Systems (WAMS) provide the opportunity of utilizing remote signals from different locations for the enhancement of power system stability. This paper focuses on the implementation of remote measurements as supplementary signals for off-center Static Var Compensators (SVCs) to damp inter-area oscillations. Combination of participation factor and residue method is used for the selection of most effective stabilizing signal. Speed difference of two generators from separate areas is identified as the best stabilizing signal and used as a supplementary signal for lead-lag controller of SVCs. Time delays of remote measurements and control signals is considered. Wide-Area Damping Controller (WADC) is deployed in Matlab Simulink framework and is tested under different operating conditions. Simulation results reveal that the proposed WADC improve the dynamic characteristic of the system significantly.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper a new approach is proposed for interpreting of regional frequencies in multi machine power systems. The method uses generator aggregation and system reduction based on coherent generators in each area. The reduced system structure is able to be identified and a kalman estimator is designed for the reduced system to estimate the inter-area modes using the synchronized phasor measurement data. The proposed method is tested on a six machine, three area test system and the obtained results show the estimation of inter-area oscillations in the system with a high accuracy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis was a step forward in improving the stability of power systems by applying new control and modelling techniques. The developed methods use the data obtained from voltage angle measurement devices which are synchronized with GPS signals to stabilize the system and avoid system-wide blackouts in the event of severe faults. New approaches were developed in this research for identifying and estimating reduced dynamic system models using phasor measurement units. The main goal of this research is achieved by integrating the developed methods to obtain a feasible wide-area control system for stabilizing the power systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new approach is proposed for obtaining a non-linear area-based equivalent model of power systems to express the inter-area oscillations using synchronised phasor measurements. The generators that remain coherent for inter-area disturbances over a wide range of operating conditions define the areas, and the reduced model is obtained by representing each area by an equivalent machine. The parameters of the reduced system are identified by processing the obtained measurements, and a non-linear Kalman estimator is then designed for the estimation of equivalent area angles and frequencies. The simulation of the approach on a two-area system shows substantial reduction of non-inter-area modes in the estimated angles. The proposed methods are also applied to a ten-machine system to illustrate the feasibility of the approach on larger and meshed networks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The impact of power fluctuations arising from fixed-speed wind turbines on the magnitude and frequency of inter-area oscillations has been investigated. The authors introduced data acquisition equipment to record the power flow on the interconnector between the Northern Ireland and Republic of Ireland systems. Through monitoring the interconnector oscillation using a fast Fourier transform, it was possible to determine the magnitude and frequency of the inter-area oscillation between the two systems. The impact of tower shadow on the output power from a wind farm was analysed using data recorded on site. A case study investigates the effect on the system of the removal of a large fixed-speed wind farm. Conclusions are drawn on the impact that conventional generation and the output from fixed-speed wind farms have on the stability of the Irish power system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The impact of power fluctuations arising from fixed-speed wind turbines on the magnitude and frequency of inter-area oscillations was investigated. The authors used data acquisition equipment to record the power flow on the interconnector between the Northern Ireland and Republic of Ireland systems. By monitoring the interconnector oscillation using a fast Fourier transform, it was possible to determine the magnitude and frequency of the inter-area oscillation between the Northern Ireland electricity system and that of the electricity supply board. Analysis was preformed to determine the relationship (if any) between the inter-area oscillation and the observed wind power generation at the corresponding time. Subsequently, regression analysis was introduced to model this relationship between the FFT output and the wind power generation. The effect of conventional generators on the magnitude and frequency of the inter-area oscillation was also considered.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Two case studies are presented in this paper to demonstrate the impact of different power system operation conditions on the power oscillation frequency modes in the Irish power system. A simplified 2 area equivalent of the Irish power system has been used in this paper, where area 1 represents the Republic of Ireland power system and area 2 represents the Northern Ireland power system.

The potential power oscillation frequency modes on the interconnector during different operation conditions have been analysed in this paper. The main objective of this paper is to analyse the influence of different operation conditions involving wind turbine generator (WTG) penetration on power oscillation frequency modes using phasor measurement unit (PMU) data.

Fast Fourier transform (FFT) analysis was performed to identify the frequency oscillation mode while correlation coefficient analysis was used to determine the source of the frequency oscillation. The results show that WTG, particularly fixed speed induction generation (FSIG), gives significant contribution to inter-area power oscillation frequency modes during high WTG operation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This chapter looks at issues of non-stationarity in determining when a transient has occurred and when it is possible to fit a linear model to a non-linear response. The first issue is associated with the detection of loss of damping of power system modes. When some control device such as an SVC fails, the operator needs to know whether the damping of key power system oscillation modes has deteriorated significantly. This question is posed here as an alarm detection problem rather than an identification problem to get a fast detection of a change. The second issue concerns when a significant disturbance has occurred and the operator is seeking to characterize the system oscillation. The disturbance initially is large giving a nonlinear response; this then decays and can then be smaller than the noise level ofnormal customer load changes. The difficulty is one of determining when a linear response can be reliably identified between the non-linear phase and the large noise phase of thesignal. The solution proposed in this chapter uses “Time-Frequency” analysis tools to assistthe extraction of the linear model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a new approach to the design of a rough fuzzy controller for the control loop of the SVC (static VAR system) in a two area power system for stability enhancement with particular emphasis on providing effective damping for oscillatory instabilities. The performances of the rough fuzzy and the conventional fuzzy controller are compared with that of the conventional PI controller for a variety of transient disturbances, highlighting the effectiveness of the rough fuzzy controller in damping the inter-area oscillations. The effect of the rough fuzzy controller in improving the CCT (critical clearing time) of the two area system is elaborated in this paper as well.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper an approach is presented for identification of a reduced model for coherent areas in power systems using phasor measurement units to represent the inter-area oscillations of the system. The generators which are coherent in a wide range of operating conditions form the areas in power systems and the reduced model is obtained by representing each area by an equivalent machine. The reduced nonlinear model is then identified based on the data obtained from measurement units. The simulation is performed on three test systems and the obtained results show high accuracy of identification process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper demonstrates the application of inverse filtering technique for power systems. In order to implement this method, the control objective should be based on a system variable that needs to be set on a specific value for each sampling time. A control input is calculated to generate the desired output of the plant and the relationship between the two is used design an auto-regressive model. The auto-regressive model is converted to a moving average model to calculate the control input based on the future values of the desired output. Therefore, required future values to construct the output are predicted to generate the appropriate control input for the next sampling time.