990 resultados para intelligent water drops


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Intelligent Water Drop (IWD) algorithm is a recent stochastic swarm-based method that is useful for solving combinatorial and function optimization problems. In this paper, we investigate the effectiveness of the selection method in the solution construction phase of the IWD algorithm. Instead of the fitness proportionate selection method in the original IWD algorithm, two ranking-based selection methods, namely linear ranking and exponential ranking, are proposed. Both ranking-based selection methods aim to solve the identified limitations of the fitness proportionate selection method as well as to enable the IWD algorithm to escape from local optima and ensure its search diversity. To evaluate the usefulness of the proposed ranking-based selection methods, a series of experiments pertaining to three combinatorial optimization problems, i.e., rough set feature subset selection, multiple knapsack and travelling salesman problems, is conducted. The results demonstrate that the exponential ranking selection method is able to preserve the search diversity, therefore improving the performance of the IWD algorithm. © 2014 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Wettability gradient surfaces play a significant role in control and manipulation of liquid drops. The present work deals with the analysis of water drops impacting onto the junction line between hydrophobic texture and hydrophilic smooth portions of a dual-textured substrate made using stainless steel material. The hydrophobic textured portion of the substrate comprised of unidirectional parallel groove-like and pillar-like structures of uniform dimensions. A high-speed video camera recorded the spreading and receding dynamics of impacting drops. The drop impact dynamics during the early inertia driven impact regime remains unaffected by the dual-texture feature of the substrate. A larger retraction speed of drop liquid observed on the hydrophobic portion of the substrate during the impact of low velocity drops makes the drop liquid on the higher wettability portion to advance further (secondary drop spreading). The net horizontal drop velocity towards the hydrophilic portion of the dual-textured substrate decreases with increasing drop impact velocity. The available experimental results suggest that the movement of bulk drop liquid away from the impact point during drop impact on the dual-textured substrate is larger for the impact of low inertia drops. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Crown Copyright © 2015 Published by Elsevier Inc. All rights reserved. The Intelligent Water Drop (IWD) algorithm is a recent stochastic swarm-based method that is useful for solving combinatorial and function optimization problems. In this paper, we propose an IWD ensemble known as the Master-River, Multiple-Creek IWD (MRMC-IWD) model, which serves as an extension of the modified IWD algorithm. The MRMC-IWD model aims to improve the exploration capability of the modified IWD algorithm. It comprises a master river which cooperates with multiple independent creeks to undertake optimization problems based on the divide-and-conquer strategy. A technique to decompose the original problem into a number of sub-problems is first devised. Each sub-problem is then assigned to a creek, while the overall solution is handled by the master river. To empower the exploitation capability, a hybrid MRMC-IWD model is introduced. It integrates the iterative improvement local search method with the MRMC-IWD model to allow a local search to be conducted, therefore enhancing the quality of solutions provided by the master river. To evaluate the effectiveness of the proposed models, a series of experiments pertaining to two combinatorial problems, i.e., the travelling salesman problem (TSP) and rough set feature subset selection (RSFS), are conducted. The results indicate that the MRMC-IWD model can satisfactorily solve optimization problems using the divide-and-conquer strategy. By incorporating a local search method, the resulting hybrid MRMC-IWD model not only is able to balance exploration and exploitation, but also to enable convergence towards the optimal solutions, by employing a local search method. In all seven selected TSPLIB problems, the hybrid MRMC-IWD model achieves good results, with an average deviation of 0.021% from the best known optimal tour lengths. Compared with other state-of-the-art methods, the hybrid MRMC-IWD model produces the best results (i.e. the shortest and uniform reducts of 20 runs) for all13 selected RSFS problems.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper reports an experimental investigation of low Weber number water drops impacting onto solid surfaces exhibiting anisotropic wetting. The wetting anisotropy is created by patterning the solid surfaces with unidirectional parallel grooves. Temporal measurements of impacting drop parameters such as drop base contact diameter, apparent contact angle of drop, and drop height at the center are obtained from high-speed video recordings of drop impacts. The study shows that the impact of low Weber number water drops on the grooved surface exhibits beating phenomenon in the temporal variations of the dynamic contact angle anisotropy and drop height at the center of the impacting drop. It is observed that the beating phenomenon of impacting drop parameters is caused by the frequency difference between the dynamic contact angle oscillations of impacting drop liquid oriented perpendicular and parallel to the direction of grooves on the grooved surface. The primary trigger for the phenomenon is the existence of non-axisymmetric drop flow on the grooved surface featuring pinned and free motions of drop liquid in the directions perpendicular and parallel to the grooves, respectively. The beat frequency is almost independent of the impact drop Weber number. Further experimental measurements with solid surfaces of different groove textures show that the grooved surface with larger wetting anisotropy may be expected to show a dominant beating phenomenon. The phenomenon is gradually damped out with time and is fully unrecognizable at higher drop impact Weber numbers. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Hydrophobic/superhydrophobic metallic surfaces prepared via chemical treatment are encountered in many industrial scenarios involving the impingement of spray droplets. The effectiveness of such surfaces is understood through the analysis of droplet impact experiments. In the present study, three target surfaces with aluminum (Al-6061) as base material-acid-etched, Octadecyl Trichloro Silane (OTS) coated, and acid-etched plus OTS-coated-were prepared. Experiments on the impact of inertia dominated water drops on these chemically modified aluminum surfaces were carried out with the objective to highlight the effect of chemical treatment on the target surfaces on key sub-processes occurring in drop impact phenomenon. High speed videos of the entire drop impact dynamics were captured at three Weber number (We) conditions representative of high We (We > 200) regime. During the early stages of drop spreading, the drop impact resulted in ejection of secondary droplets from spreading drop front on the etched surfaces resembling prompt splash on rough surfaces whereas no such splashing was observable on untreated aluminum surface. Prominent development of undulations (fingers) were observed at the rim of drop spreading on the etched surfaces; between the etched surfaces the OTS-coated surface showed a subdued development of fingers than the uncoated surface. The impacted drops showed intense receding on OTS-coated surfaces whereas on the etched surface a highly irregular receding, with drop liquid sticking to the surface, was observed. Quantitative analyses were performed to reveal the effect of target surface characteristics on drop impact parameters such as temporal variation of spread factor of drop lamella, temporal variation of average finger length during spreading phase, maximum drop spreading, time taken to attain maximum spreading, sensitivity of maximum spreading to We, number of fingers at maximum spreading, and average receding velocity of drop lamella. Existing models for maximum drop spreading showed reasonably good agreement with the experimental measurements on the target surfaces except the acid-etched surface. (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This study detailed the structure of turbulence in the air-side and water-side boundary layers in wind-induced surface waves. Inside the air boundary layer, the kurtosis is always greater than 3 (the value for normal distribution) for both horizontal and vertical velocity fluctuations. The skewness for the horizontal velocity is negative, but the skewness for the vertical velocity is always positive. On the water side, the kurtosis is always greater than 3, and the skewness is slightly negative for the horizontal velocity and slightly positive for the vertical velocity. The statistics of the angle between the instantaneous vertical fluctuation and the instantaneous horizontal velocity in the air is similar to those obtained over solid walls. Measurements in water show a large variance, and the peak is biased towards negative angles. In the quadrant analysis, the contribution of quadrants Q2 and Q4 is dominant on both the air side and the water side. The non-dimensional relative contributions and the concentration match fairly well near the interface. Sweeps in the air side (belonging to quadrant Q4) act directly on the interface and exert pressure fluctuations, which, in addition to the tangential stress and form drag, lead to the growth of the waves. The water drops detached from the crest and accelerated by the wind can play a major role in transferring momentum and in enhancing the turbulence level in the water side.On the air side, the Reynolds stress tensor's principal axes are not collinear with the strain rate tensor, and show an angle α σ≈=-20°to-25°. On the water side, the angle is α σ≈=-40°to-45°. The ratio between the maximum and the minimum principal stresses is σ a/σ b=3to4 on the air side, and σ a/σ b=1.5to3 on the water side. In this respect, the air-side flow behaves like a classical boundary layer on a solid wall, while the water-side flow resembles a wake. The frequency of bursting on the water side increases significantly along the flow, which can be attributed to micro-breaking effects - expected to be more frequent at larger fetches. © 2012 Elsevier B.V.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A copper-rich cereal: Superhydrophobic copper particles show a very large Cheerios effect and rapidly self-assemble into robust sheets on the surface of water. These sheets can support objects (including water drops, see photo) placed on them, even though the irregular geometry of the particles means that they contain macroscopic holes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Plant trichomes play important protective functions and may have a major influence on leaf surface wettability. With the aim of gaining insight into trichome structure, composition and function in relation to water-plant surface interactions, we analyzed the adaxial and abaxial leaf surface of Quercus ilex L. (holm oak) as model. By measuring the leaf water potential 24 h after the deposition of water drops on to abaxial and adaxial surfaces, evidence for water penetration through the upper leaf side was gained in young and mature leaves. The structure and chemical composition of the abaxial (always present) and adaxial (occurring only in young leaves) trichomes were analyzed by various microscopic and analytical procedures. The adaxial surfaces were wettable and had a high degree of water drop adhesion in contrast to the highly unwettable and water repellent abaxial holm oak leaf sides. The surface free energy, polarity and solubility parameter decreased with leaf age, with generally higher values determined for the abaxial sides. All holm oak leaf trichomes were covered with a cuticle. The abaxial trichomes were composed of 8% soluble waxes, 49% cutin, and 43% polysaccharides. For the adaxial side, it is concluded that trichomes and the scars after trichome shedding contribute to water uptake, while the abaxial leaf side is highly hydrophobic due to its high degree of pubescence and different trichome structure, composition and density. Results are interpreted in terms of water-plant surface interactions, plant surface physical-chemistry, and plant ecophysiology.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The literature on the evaporation of drops of pure liquids, drops containing solids and droplet sprays has been critically reviewed. An experimental study was undertaken on the drying of suspended drops of pure water and aqueous sodium sulphate decahydrate with concentrations varying from 5 to 54. 1 wt. %. Individual drops were suspended from a glass filament balance in a 26 mm I.D. vertical wind tunnel, designed and constructed to supply hot de-humidified air, to simulate conditions encountered in commercial spray driers. A novel thin film thermocouple was developed to facilitate the simultaneous measurement of drop weight and core temperature. The heat conduction through the thermocouple was reduced because of its unique design; using essentially a single 50μ diameter nickel wire. For pure water drops, the Nusselt number was found to be a function of the Reynolds, Prandtl and Transfer numbers for a temperature range between 19 to 79°C.                  Nu = 2 + 0.19 (1/B)0.24 Re0.5 Pr0.33 Two distinct periods were observed during the drying of aqueous sodium sulphate decahydrate. The first period was characterised by the evaporation from a free liquid surface, whilst drying in the second period was controlled by the crust resistance. Fracturing of the crust occurred randomly but was more frequent at higher concentrations and temperatures. A model was proposed for the drying of slurry drops, based on a receding evaporation interface. The model was solved numerically for the variation of core temperature, drop weight and crust thickness as a function of time. Experimental results were in excellent agreement with the model predictions although at higher temperatures modifications to the model had to be made to accommodate the unusual behaviour of sodium sulphate slurries, i.e. the formation of hydrates.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A specially-designed vertical wind tunnel was used to freely suspend individual liquid drops of 5 mm initial diameter to investigate drop dynamics, terminal velocity and heat and mass transfer rates. Droplets of distilled, de-ionised water, n-propanol, iso-butanol, monoethanolamine and heptane were studied over a temperature range of 50oC to 82oC. The effects of substances that may provide drop surface rigidity (e.g. surface active agents, binders and polymers) on mass transfer rates were investigated by doping distilled de-ionised water drops with sodium di-octyl sulfo-succinate surfactant. Mass transfer rates decreased with reduced drop oscillation as a result of surfactant addition, confirming the importance of droplet surface instability. Rigid naphthalene spheres and drops which formed a skin were also studied; the results confirmed the reduced transfer rates in the absence of drop fluidity. Following consideration of fundamental drop dynamics in air and experimental results from this study, a novel dimensionless group, the Oteng-Attakora, (OT), number was included in the mass transfer equation to account for droplet surface behaviour and for prediction of heat and mass transfer rates from single drops which exhibit surface instability at Re>=500. The OT number and the modified mass transfer equation are respectively: OT=(ava2/d).de1.5(d/) Sh = 2 + 0.02OT0.15Re0.88Sc0.33 Under all conditions drop terminal velocity increased linearly with the square root of drop diameter and the drag coefficient was 1. The data were correlated with a modified equation by Finlay as follows: CD=0.237.((Re/P0.13)1.55(1/We.P0.13) The relevance of the new model to practical evaporative spray processes is discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The degradation of high voltage electrical insulation is a prime factor that can significantly influence the reliability performance and the costs of maintaining high voltage electricity networks. Little information is known about the system of localized degradation from corona discharges on the relatively new silicone rubber sheathed composite insulators that are now being widely used in high voltage applications. This current work focuses on the fundamental principles of electrical corona discharge phenomena to provide further insights to where damaging surface discharges may localize and examines how these discharges may degrade the silicone rubber material. Although water drop corona has been identified by many authors as a major cause of deterioration of silicone rubber high voltage insulation until now no thorough studies have been made of this phenomenon. Results from systematic measurements taken using modern digital instrumentation to simultaneously record the discharge current pulses and visible images associated with corona discharges from between metal electrodes, metal electrodes and water drops, and between waters drops on the surface of silicone rubber insulation, using a range of 50 Hz voltages are inter compared. Visual images of wet electrodes show how water drops can play a part in encouraging flashover, and the first reproducible visual images of water drop corona at the triple junction of water air and silicone rubber insulation are presented. A study of the atomic emission spectra of the corona produced by the discharge from its onset up to and including spark-over, using a high resolution digital spectrometer with a fiber optic probe, provides further understanding of the roles of the active species of atoms and molecules produced by the discharge that may be responsible for not only for chemical changes of insulator surfaces, but may also contribute to the degradation of the metal fittings that support the high voltage insulators. Examples of real insulators and further work specific to the electrical power industry are discussed. A new design concept to prevent/reduce the damaging effects of water drop corona is also presented.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Spreading and receding processes of water drops impacting on a stainless steel surface comprising rectangular shaped parallel grooves are studied experimentally. The study was confined to the impact of drops in inertia dominated flow regime with Weber number in the range 15 - 257. Measurements of spreading drop diameter and drop height were obtained during the impact process as function of time. Experimental measurements of spreading drop diameter and drop height obtained for the grooved surface were compared with those obtained for a smooth surface to elucidate the influence of surface grooves on the impact process. The grooves definitely influence both spreading and receding processes of impacting liquid drops. A more striking observation from this study is that the receding process of impacting liquid drops is dramatically changed by the groove structure for all droplet Weber number.