789 resultados para intelligent decision making
Resumo:
Electricity markets are complex environments, involving a large number of different entities, playing in a dynamic scene to obtain the best advantages and profits. MASCEM is a multi-agent electricity market simulator to model market players and simulate their operation in the market. Market players are entities with specific characteristics and objectives, making their decisions and interacting with other players. MASCEM is integrated with ALBidS, a system that provides several dynamic strategies for agents’ behavior. This paper presents a method that aims at enhancing ALBidS competence in endowing market players with adequate strategic bidding capabilities, allowing them to obtain the higher possible gains out of the market. This method uses a reinforcement learning algorithm to learn from experience how to choose the best from a set of possible actions. These actions are defined accordingly to the most probable points of bidding success. With the purpose of accelerating the convergence process, a simulated annealing based algorithm is included.
Resumo:
During the last 10 years several molecular markers have been established as useful tools among the armamentarium of a hematologist. As a consequence, the number of performed hematologic molecular analyses has immensely increased. Often, such tests replace or complement other laboratory methods. Molecular markers can be useful in many ways: they can serve for diagnostics, describe the prognostic profile, predict which types of drugs are indicated, and can be used for the therapeutic monitoring of the patient to indicate an adequate response or predict resistance or relapse of the disease. Many markers fulfill more than one of these aspects. Most important, however, is the right choice of analyses at the right time-points!
Resumo:
The construction industry is characterised by fragmentation and suffers from lack of collaboration, often adopting adversarial working practices to achieve deliverables. For the UK Government and construction industry, BIM is a game changer aiming to rectify this fragmentation and promote collaboration. However it has become clear that there is an essential need to have better controls and definitions of both data deliverables and data classification. Traditional methods and techniques for collating and inputting data have shown to be time consuming and provide little to improve or add value to the overall task of improving deliverables. Hence arose the need in the industry to develop a Digital Plan of Work (DPoW) toolkit that would aid the decision making process, providing the required control over the project workflows and data deliverables, and enabling better collaboration through transparency of need and delivery. The specification for the existing Digital Plan of Work (DPoW) was to be, an industry standard method of describing geometric, requirements and data deliveries at key stages of the project cycle, with the addition of a structured and standardised information classification system. However surveys and interviews conducted within this research indicate that the current DPoW resembles a digitised version of the pre-existing plans of work and does not push towards the data enriched decision-making abilities that advancements in technology now offer. A Digital Framework is not simply the digitisation of current or historic standard methods and procedures, it is a new intelligent driven digital system that uses new tools, processes, procedures and work flows to eradicate waste and increase efficiency. In addition to reporting on conducted surveys above, this research paper will present a theoretical investigation into usage of Intelligent Decision Support Systems within a digital plan of work framework. Furthermore this paper will present findings on the suitability to utilise advancements in intelligent decision-making system frameworks and Artificial Intelligence for a UK BIM Framework. This should form the foundations of decision-making for projects implemented at BIM level 2. The gap identified in this paper is that the current digital toolkit does not incorporate the intelligent characteristics available in other industries through advancements in technology and collation of vast amounts of data that a digital plan of work framework could have access to and begin to develop, learn and adapt for decision-making through the live interaction of project stakeholders.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-05
Resumo:
There has been discussion whether corporate decision-making can be helped by decision support systems regarding qualitative aspects of decision making (e.g. trouble shooting)(Löf and Möller, 2003). Intelligent decision support systems have been developed to help business controllers to perform their business analysis. However, few papers investigated the user’s point of view regarding such systems. How do decision-makers perceive the use of decision support systems, in general, and dashboards in particular? Are dashboards useful tools for business controllers? Based on the technology acceptance model and on the positive mood theory, we suggest a series of antecedent factors that influence the perceived usefulness and perceived ease of use of dashboards. A survey is used to collect data regarding the measurement constructs. The managerial implications of this paper consist in showing the degree of penetration of dashboards in the decision making in organizations and some of the factors that explain this respective penetration rate.
Resumo:
Research interest in pedestrian behaviour spans the retail industry, emergency services, urban planners and other agencies. Most models to simulate and model pedestrian movement can be distinguished on the basis of geographical scale, from the micro-scale movement of obstacle avoidance, through the meso-scale of individuals planning multi-stop shopping trips, up to the macro-scale of overall flow of masses of people between places. In this paper, route-choice decision-making model is devised for modelling passengers flow in airport terminal. A set of devised advanced traits of passengers is firstly proposed. Advanced traits take into account a passenger’s cognitive preferences and demonstrate underlying motivations of route-choice decisions. Although the activities of passengers are normally regarded as stochastic and sometimes unpredictable, real scenarios of passenger flows are basically feasible to be compared with virtual simulations in terms of tactical route-choice decision-making. Passengers in the model are as intelligent agents who possess a bunch of initial basic traits and are categorized into five distinguish groups in terms of routing preferences. Route choices are consecutively determined by inferring current advanced traits according to the utility matrix.
Resumo:
A novel intelligent online demand side management system is proposed for peak load management in low-voltage distribution networks. This method uses low-cost controllers with low-bandwidth two-way communication installed in custumers’ premises and at distribution transformers to manage the peak load while maximising customer satisfaction. A multi-objective decision making process is proposed to select the load(s) to be delayed or controlled. The efficacy of the proposed control system is verified by simulation of three different feeder types.
Resumo:
Sophisticated models of human social behaviour are fast becoming highly desirable in an increasingly complex and interrelated world. Here, we propose that rather than taking established theories from the physical sciences and naively mapping them into the social world, the advanced concepts and theories of social psychology should be taken as a starting point, and used to develop a new modelling methodology. In order to illustrate how such an approach might be carried out, we attempt to model the low elaboration attitude changes of a society of agents in an evolving social context. We propose a geometric model of an agent in context, where individual agent attitudes are seen to self-organise to form ideologies, which then serve to guide further agent-based attitude changes. A computational implementation of the model is shown to exhibit a number of interesting phenomena, including a tendency for a measure of the entropy in the system to decrease, and a potential for externally guiding a population of agents towards a new desired ideology.
Resumo:
The construction industry has an obligation to respond to sustainability expectations of our society. Solutions that integrate innovative, intelligent and sustainability deliverables are vital for us to meet new and emerging challenges. Industrialised Building Systems (IBS), or known otherwise as prefabrication, employs a combination of ready-made components in the construction of buildings. They promote quality of production, enhance simplification of construction processes and minimise waste. The unique characteristics of this construction method respond well to sustainability. Despite the promises however, IBS has yet to be effectively implemented in Malaysia. There are often misconceptions among key stakeholders about IBS applications. The existing rating schemes fail to assess IBS against sustainability measures. To ensure the capture of full sustainability potential in buildings developed, the critical factors and action plans agreeable to all participants in the development processes need to be identified. Through questionnaire survey, eighteen critical factors relevant to IBS sustainability were identified and encapsulated into a conceptual framework to coordinate a systematic IBS decision making approach. Five categories were used to separate the critical factors into: ecological performance; economic value; social equity and culture; technical quality; and implementation and enforcement. This categorisation extends the "Triple Bottom Lines" to include social, economic, environmental and institutional dimensions. Semi-structured interviews help identify strategies of actions and solutions of potential problems through a SWOT analysis framework. These tools help the decision-makers maximise the opportunities by using available strengths, avoid weaknesses, and diagnose possible threats in the examined issues. The recommendations formed an integrated action plan to present information on what and how to improve sustainability through tackling each critical factor during IBS development. It can be used as part of the project briefing documents for IBS designers. For validation and finalisation the research deliverables, three case studies were conducted. The research fills a current gap by responding to IBS project scenarios in developing countries. It also provides a balanced view for designers to better understand sustainability potential and prioritize attentions to manage sustainability issues in IBS applications.
Resumo:
A novel intelligent online demand side management system is proposed for peak load management. The method also regulates the network voltage, balances the power in three phases and coordinates the battery storage discharge within the network. This method uses low cost controllers with low bandwidth two-way communication installed in costumers' premises and at distribution transformers to manage the peak load while maximizing customer satisfaction. A multi-objective decision making process is proposed to select the load(s) to be delayed or controlled. The efficacy of the proposed control system is verified through an event-based developed simulation in Matlab.
Resumo:
This paper addresses the topic of real-time decision making for autonomous city vehicles, i.e., the autonomous vehicles' ability to make appropriate driving decisions in city road traffic situations. The paper explains the overall controls system architecture, the decision making task decomposition, and focuses on how Multiple Criteria Decision Making (MCDM) is used in the process of selecting the most appropriate driving maneuver from the set of feasible ones. Experimental tests show that MCDM is suitable for this new application area.
Resumo:
This paper addresses the topic of real-time decision making for autonomous city vehicles, i.e. the autonomous vehicles’ ability to make appropriate driving decisions in city road traffic situations. After decomposing the problem into two consecutive decision making stages, and giving a short overview about previous work, the paper explains how Multiple Criteria Decision Making (MCDM) can be used in the process of selecting the most appropriate driving maneuver.