923 resultados para integer programming


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A credal network associates a directed acyclic graph with a collection of sets of probability measures; it offers a compact representation for sets of multivariate distributions. In this paper we present a new algorithm for inference in credal networks based on an integer programming reformulation. We are concerned with computation of lower/upper probabilities for a variable in a given credal network. Experiments reported in this paper indicate that this new algorithm has better performance than existing ones for some important classes of networks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Markov Decision Processes (MDPs) are extensively used to encode sequences of decisions with probabilistic effects. Markov Decision Processes with Imprecise Probabilities (MDPIPs) encode sequences of decisions whose effects are modeled using sets of probability distributions. In this paper we examine the computation of Γ-maximin policies for MDPIPs using multilinear and integer programming. We discuss the application of our algorithms to “factored” models and to a recent proposal, Markov Decision Processes with Set-valued Transitions (MDPSTs), that unifies the fields of probabilistic and “nondeterministic” planning in artificial intelligence research. 

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years several countries have set up policies that allow exchange of kidneys between two or more incompatible patient–donor pairs. These policies lead to what is commonly known as kidney exchange programs. The underlying optimization problems can be formulated as integer programming models. Previously proposed models for kidney exchange programs have exponential numbers of constraints or variables, which makes them fairly difficult to solve when the problem size is large. In this work we propose two compact formulations for the problem, explain how these formulations can be adapted to address some problem variants, and provide results on the dominance of some models over others. Finally we present a systematic comparison between our models and two previously proposed ones via thorough computational analysis. Results show that compact formulations have advantages over non-compact ones when the problem size is large.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La programmation linéaire en nombres entiers est une approche robuste qui permet de résoudre rapidement de grandes instances de problèmes d'optimisation discrète. Toutefois, les problèmes gagnent constamment en complexité et imposent parfois de fortes limites sur le temps de calcul. Il devient alors nécessaire de développer des méthodes spécialisées afin de résoudre approximativement ces problèmes, tout en calculant des bornes sur leurs valeurs optimales afin de prouver la qualité des solutions obtenues. Nous proposons d'explorer une approche de reformulation en nombres entiers guidée par la relaxation lagrangienne. Après l'identification d'une forte relaxation lagrangienne, un processus systématique permet d'obtenir une seconde formulation en nombres entiers. Cette reformulation, plus compacte que celle de Dantzig et Wolfe, comporte exactement les mêmes solutions entières que la formulation initiale, mais en améliore la borne linéaire: elle devient égale à la borne lagrangienne. L'approche de reformulation permet d'unifier et de généraliser des formulations et des méthodes de borne connues. De plus, elle offre une manière simple d'obtenir des reformulations de moins grandes tailles en contrepartie de bornes plus faibles. Ces reformulations demeurent de grandes tailles. C'est pourquoi nous décrivons aussi des méthodes spécialisées pour en résoudre les relaxations linéaires. Finalement, nous appliquons l'approche de reformulation à deux problèmes de localisation. Cela nous mène à de nouvelles formulations pour ces problèmes; certaines sont de très grandes tailles, mais nos méthodes de résolution spécialisées les rendent pratiques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the development and solution of binary integer formulations for production scheduling problems in market-driven foundries. This industrial sector is comprised of small and mid-sized companies with little or no automation, working with diversified production, involving several different metal alloy specifications in small tailor-made product lots. The characteristics and constraints involved in a typical production environment at these industries challenge the formulation of mathematical programming models that can be computationally solved when considering real applications. However, despite the interest on the part of these industries in counting on effective methods for production scheduling, there are few studies available on the subject. The computational tests prove the robustness and feasibility of proposed models in situations analogous to those found in production scheduling at the analyzed industrial sector. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We introduce a new Integer Linear Programming (ILP) approach for solving Integer Programming (IP) problems with bilinear objectives and linear constraints. The approach relies on a series of ILP approximations of the bilinear P. We compare this approach with standard linearization techniques on random instances and a set of real-world product bundling problems. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mixed integer programming is up today one of the most widely used techniques for dealing with hard optimization problems. On the one side, many practical optimization problems arising from real-world applications (such as, e.g., scheduling, project planning, transportation, telecommunications, economics and finance, timetabling, etc) can be easily and effectively formulated as Mixed Integer linear Programs (MIPs). On the other hand, 50 and more years of intensive research has dramatically improved on the capability of the current generation of MIP solvers to tackle hard problems in practice. However, many questions are still open and not fully understood, and the mixed integer programming community is still more than active in trying to answer some of these questions. As a consequence, a huge number of papers are continuously developed and new intriguing questions arise every year. When dealing with MIPs, we have to distinguish between two different scenarios. The first one happens when we are asked to handle a general MIP and we cannot assume any special structure for the given problem. In this case, a Linear Programming (LP) relaxation and some integrality requirements are all we have for tackling the problem, and we are ``forced" to use some general purpose techniques. The second one happens when mixed integer programming is used to address a somehow structured problem. In this context, polyhedral analysis and other theoretical and practical considerations are typically exploited to devise some special purpose techniques. This thesis tries to give some insights in both the above mentioned situations. The first part of the work is focused on general purpose cutting planes, which are probably the key ingredient behind the success of the current generation of MIP solvers. Chapter 1 presents a quick overview of the main ingredients of a branch-and-cut algorithm, while Chapter 2 recalls some results from the literature in the context of disjunctive cuts and their connections with Gomory mixed integer cuts. Chapter 3 presents a theoretical and computational investigation of disjunctive cuts. In particular, we analyze the connections between different normalization conditions (i.e., conditions to truncate the cone associated with disjunctive cutting planes) and other crucial aspects as cut rank, cut density and cut strength. We give a theoretical characterization of weak rays of the disjunctive cone that lead to dominated cuts, and propose a practical method to possibly strengthen those cuts arising from such weak extremal solution. Further, we point out how redundant constraints can affect the quality of the generated disjunctive cuts, and discuss possible ways to cope with them. Finally, Chapter 4 presents some preliminary ideas in the context of multiple-row cuts. Very recently, a series of papers have brought the attention to the possibility of generating cuts using more than one row of the simplex tableau at a time. Several interesting theoretical results have been presented in this direction, often revisiting and recalling other important results discovered more than 40 years ago. However, is not clear at all how these results can be exploited in practice. As stated, the chapter is a still work-in-progress and simply presents a possible way for generating two-row cuts from the simplex tableau arising from lattice-free triangles and some preliminary computational results. The second part of the thesis is instead focused on the heuristic and exact exploitation of integer programming techniques for hard combinatorial optimization problems in the context of routing applications. Chapters 5 and 6 present an integer linear programming local search algorithm for Vehicle Routing Problems (VRPs). The overall procedure follows a general destroy-and-repair paradigm (i.e., the current solution is first randomly destroyed and then repaired in the attempt of finding a new improved solution) where a class of exponential neighborhoods are iteratively explored by heuristically solving an integer programming formulation through a general purpose MIP solver. Chapters 7 and 8 deal with exact branch-and-cut methods. Chapter 7 presents an extended formulation for the Traveling Salesman Problem with Time Windows (TSPTW), a generalization of the well known TSP where each node must be visited within a given time window. The polyhedral approaches proposed for this problem in the literature typically follow the one which has been proven to be extremely effective in the classical TSP context. Here we present an overall (quite) general idea which is based on a relaxed discretization of time windows. Such an idea leads to a stronger formulation and to stronger valid inequalities which are then separated within the classical branch-and-cut framework. Finally, Chapter 8 addresses the branch-and-cut in the context of Generalized Minimum Spanning Tree Problems (GMSTPs) (i.e., a class of NP-hard generalizations of the classical minimum spanning tree problem). In this chapter, we show how some basic ideas (and, in particular, the usage of general purpose cutting planes) can be useful to improve on branch-and-cut methods proposed in the literature.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Le persone che soffrono di insufficienza renale terminale hanno due possibili trattamenti da affrontare: la dialisi oppure il trapianto di organo. Nel caso volessero seguire la seconda strada, oltre che essere inseriti nella lista d'attesa dei donatori deceduti, possono trovare una persona, come il coniuge, un parente o un amico, disposta a donare il proprio rene. Tuttavia, non sempre il trapianto è fattibile: donatore e ricevente possono, infatti, presentare delle incompatibilità a livello di gruppo sanguigno o di tessuto organico. Come risposta a questo tipo di problema nasce il KEP (Kidney Exchange Program), un programma, ampiamente avviato in diverse realtà europee e mondiali, che si occupa di raggruppare in un unico insieme le coppie donatore/ricevente in questa stessa situazione al fine di operare e massimizzare scambi incrociati di reni fra coppie compatibili. Questa tesi approffondisce tale questione andando a valutare la possibilità di unire in un unico insieme internazionale coppie donatore/ricevente provenienti da più paesi. Lo scopo, naturalmente, è quello di poter ottenere un numero sempre maggiore di trapianti effettuati. Lo studio affronta dal punto di vista matematico problematiche legate a tale collaborazione: i paesi che eventualmente accettassero di partecipare a un simile programma, infatti, devono avere la garanzia non solo di ricavarne un vantaggio, ma anche che tale vantaggio sia equamente distribuito fra tutti i paesi partecipanti.