969 resultados para insegnamento della matematica Finlandia OCSE-PISA TIMSS polinomi confronto sistemi scolastici
Resumo:
Dalle rilevazioni PISA condotte dall'OCSE nel 2003, gli studenti finlandesi sono risultati i migliori in Europa in capacità di lettura e competenze matematiche. Vari esperti in didattica si sono quindi interrogati cercando quali aspetti rendessero eccellente il sistema finlandese. Altri, invece, hanno sostenuto che le prove PISA rilevassero solo alcune abilità senza tener conto delle conoscenze apprese a scuola, quindi il successo finlandese potrebbe essere dovuto al caso. Infatti nei test TIMSS, gli alunni finlandesi hanno avuto risultati mediocri. La tesi cerca di spiegare i “segreti” del sistema scolastico finlandese e di confrontarlo con la scuola italiana. Sono state osservate in loco le lezioni di matematica in alcune classi campione di una scuola finlandese all’ottavo e nono anno di scolarità. Si analizza la didattica sotto diversi punti di vista e si confrontano i libri di testo finlandesi e italiani su uno specifico argomento ritenuto di cruciale importanza: i polinomi. Si evidenzia che la differenza nei risultati delle rilevazioni non dipende tanto dalle differenze dei sistemi scolastici quanto all'impostazione culturale dei giovani finlandesi.
Resumo:
Un esperimento nell'insegnamento della matematica condotto attraverso l'aspetto geometrico delle identità algebriche.
Resumo:
Questa tesi ripercorre le tappe principali della storia della scuola secondaria italiana, soffermandosi su quelle che hanno caratterizzato l'insegnamento della matematica. Inoltre analizza le caratteristiche delle prove di matematica assegnate alla maturità scientifica fin dalla nascita dell'esame di Stato.
Resumo:
Perchè, nelle competenze di matematica, i risultati riportati dagli studenti della Svizzera Italiana sono migliori di quelli dell'Italia? Domanda interessante in quanto nei due Paesi confinanti si utilizza la stessa lingua e in più molti italiani, lasciano l'Italia per trasferirsi in Ticino, una realtà quindi con cui l'Italia si confronta. Vengono presi in considerazione vari aspetti per cercare di dare una risposta.
Resumo:
La tesi propone una panoramica sulla storia dell'insegnamento della probabilità, per poi passare al ruolo dell'intuizione e dell'istruzione. La parte centrale espone un progetto sulla probabilità condizionata svolto in una classe seconda in una scuola secondaria di secondo grado.
Resumo:
L’oggetto dell'elaborato riguarda l’insegnamento attuale dell’analisi matematica nella scuola secondaria superiore. Si sono esaminate le difficoltà incontrate dagli studenti ed elaborate riflessioni di carattere didattico per operare un insegnamento efficace. Nel primo capitolo sono state messe a punto alcune riflessioni sui fini dell’educazione. Il secondo capitolo si è concentrato sulle difficoltà legate all'insegnamento dell’analisi matematica, esaminando diverse situazioni didattiche verificatesi nel corso del tirocinio svolto nei mesi di Ottobre e Novembre 2013 presso l'Istituto Tecnico Tecnologico di Cesena. Il terzo capitolo opera un confronto fra i diversi approcci all'insegnamento della matematica in generale e dell'analisi in particolare che si presentano nelle diverse scuole secondarie, in particolare nei Licei e negli Istituti Tecnici. Nel quarto capitolo ci si è occupati del livello scolastico successivo, analizzando le differenze che intercorrono tra la scuola secondaria superiore e l’università per quanto riguarda gli stadi dello sviluppo mentale degli studenti, le materie, i metodi di studio e gli obiettivi di apprendimento.
Resumo:
La matematica è un’attività umana che sembra non lasciare indifferente quasi nessuno: alcuni rimangono affascinati dalla sua ‘magia’, molti altri provano paura e rifiutano categoricamente persino di sentirla nominare. Spesso, non solo a scuola, si percepisce la matematica come un’attività distaccata, fredda, lontana dalle esigenze del mondo reale. Bisognerebbe, invece, fare in modo che gli studenti la sentano come una risorsa culturale importante, da costruire personalmente con tempo, fatica e soddisfazione. Gli studenti dovrebbero avere l’opportunità di riflettere sul senso di fare matematica e sulle sue potenzialità, attraverso attività che diano spazio alla costruzione autonoma, alle loro ipotesi e alla condivisione delle idee. Nel primo capitolo, a partire dalle difficoltà degli studenti, sono analizzati alcuni studi sulla straordinaria capacità della matematica di organizzare le nostre rappresentazioni del mondo che ci circonda e sull’importanza di costruire percorsi didattici incentrati sulla modellizzazione matematica. Dalla considerazione di questi studi, è stato elaborato un progetto didattico, presentato nel secondo capitolo, che potesse rappresentare un’occasione inconsueta ma significativa per cercare di chiarire l’intreccio profondo tra matematica e fisica. Si tratta di una proposta rivolta a studenti all’inizio del secondo biennio in cui è prevista una revisione dei problemi della cinematica attraverso le parole di Galileo. L’analisi di documenti storici permette di approfondire le relazioni tra grandezze cinematiche e di mettere in evidenza la struttura matematica di tali relazioni. Le scelte che abbiamo fatto nella nostra proposta sono state messe in discussione da alcuni insegnanti all’inizio della formazione per avere un primo riscontro sulla sua validità e sulle sue potenzialità. Le riflessioni raccolte sono state lo spunto per trarre delle considerazioni finali. Nelle appendici, è presente materiale di lavoro utilizzato per la progettazione e discussione del percorso: alcuni testi originali di Aristotele e di Galileo, le diapositive con cui la proposta è stata presentata agli studenti universitari e un esempio di protocollo di costruzione di Geogebra sul moto parabolico.
Resumo:
In questa tesi si presenta l’attività didattica "Fascinating World of Geometric Forms", la relativa sperimentazione fatta su un campione di 175 studenti al quarto anno di scuola secondaria di secondo grado e i risultati ottenuti. In questo progetto, grazie alla penna 3D, è stato possibile fare matematica costruttiva in classe. Gli studenti hanno potuto disegnare e costruire nello spazio 3D, senza più essere costretti a disegnare in prospettiva sul foglio. La ricerca principalmente tenta di sviluppare l'intuito geometrico, pertanto è facilmente adattabile a studenti di varie età. Si propongono una serie di attività volte a rispondere alla domanda "Come uscire dal piano?" e, a tal proposito, si suggeriscono vari metodi: aggiungere la profondità agli elementi del piano; comporre sviluppi piani di poliedri; ruotare figure geometriche piane limitate attorno a un asse contenuto nel piano della figura; comporre nello spazio sezioni piane di quadriche. Questo progetto di ricerca, sviluppato sotto la supervisione del professor Alberto Parmeggiani del Dipartimento di Matematica di Bologna e in collaborazione con il professor Gianni Brighetti del Dipartimento di Psicologia di Bologna, si pone come obiettivo quello di avvicinare gli studenti allo studio della geometria dello spazio e, soprattutto, di sviluppare in loro la capacità di creare immagini mentali e concetti figurali.
Resumo:
Lo scopo di questa tesi è quello di verificare il livello di conoscenza riguardo alla trigonometria negli studenti del 4 anno della Scuola Secondaria di II grado e in quelli iscritti al primo anno del corso di studi in Matematica. Per analizzare al meglio le conoscenze che dovrebbero avere gli studenti, è stato osservato come affrontano questo argomento i libri di testo della scuola e quelli universitari. Sono stati osservati anche gli esercizi proposti dai libri, gli obiettivi di apprendimento e le indicazioni nazionali previste dal ministero.
Resumo:
En términos generales, los jóvenes finlandeses de 15 años están entre los mejores en competencia científica, competencia matemática y lectura en la evaluación internacional PISA (Programa Internacional para la Evaluación de Estudiantes) 2006, así como en 2003 y en 2000. Los resultados destacan por la escasa distancia que existe entre el alumnado con buenos resultados y el alumnado con resultados bajos. Esto, unido al alto número de alumnos con resultados excelentes, muestra la eficacia del sistema educativo finlandés en lo que respecta al desarrollo de competencias básicas para la vida social y laboral. Las chicas y los chicos finlandeses obtienen el mismo resultado en competencia científica. Las chicas son mejores en lectura y tienen peores resultados en competencia matemática. La diferencia entre centros educativos en Finlandia es muy reducida. Prácticamente todos aportan lo mismo al aprendizaje de su alumnado. Por último, se analizan las etapas del sistema educativo finés. Además se relacionan el resultado de la competencia científica y el índice de estatus socioeconómico, laboral y cultural individual.
Resumo:
Questa dissertazione si concentra sul dibattito circa l’essenza della matematica a partire dalla nascita delle geometrie non euclidee. Essa è una scienza della natura o una costruzione (e dunque una libera invenzione) della mente umana? Trattando altresì della crisi dei fondamenti, e tenendo a mente le posizioni platoniste e costruttiviste, questa tesi analizza le risposte che, da fine Ottocento in poi, diedero Jules-Henri Poincaré, Bertrand Russell, L.E.J. Brouwer e David Hilbert, e con loro le varie correnti convenzionaliste, logiciste, intuizioniste e formaliste.