993 resultados para insect biology
Resumo:
This paper aimed to verify the presence of black-fly of citrus in the state of Pernambuco in Brazil and wordwide. The material with symptoms were collected in the metropolitan area of Recife/PE and subsequently led to the identification in the Insect Biology Laboratory of the Federal Rural University of Pernambuco - UFRPE on February 4, 2011. The samples collected from the branches of citrus and bilocular, found the presence of eggs, nymphs, "pupae" and adults of Aleurocanthus woglumi, confirming its occurrence in the state of Pernambuco. The presence of blackfly of citrus had been detected in the city in the state of Pernambuco as Timbauba, Bom Jardim, Macaparana, Axes, Orobo, Sao Vincent Farrer and Itambe in citrus plants. Before that had a suspect in the Valley Siriji/PE, now it is in the metropolitan area of Recife, therefore we can confirm that the material collected and identified in the metropolitan area of Pernambuco is A. woglumi.
Resumo:
Phthia picta (Drury, 1770) é considerado importante praga da cultura do tomateiro-estaqueado, em função dos danos que pode causar aos frutos. Devido à ausência de informações sobre a biologia desse coreídeo sob condições controladas, realizou-se este trabalho, objetivando o seu estudo em uma cultivar comercial de tomateiro (Lycopersicon esculentum Mill). O trabalho foi conduzido no Laboratório de Entomologia do Departamento de Fitossanidade da Faculdade de Agronomia da UFRGS, sob condições controladas (26 ± 1ºC; 70 ± 10% UR e fotofase de 14h), utilizando como alimento folíolos e frutos de tomateiro, cultivar Carmen. Os estádios duraram 3,26, 6,91, 7,91, 7,12 e 11,25 dias, respectivamente ao 1, 2º, 3º, 4º e 5º. A duração da fase ninfal foi de 34,39 dias. A mortalidade foi maior no 3º, 4º e 5º estádios. A mortalidade na fase ninfal foi de 56,0%. O número de ovos/fêmea, oviposições/fêmea e ovos/oviposição foi 60,43, 6,14 e 9,84, respectivamente. O período de incubação dos ovos foi de 10,90 dias e a percentagem de eclosão foi de 65,87%.
Resumo:
Although various biological aspects of Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) have been examined, adult movement and dispersal of this insect pest is not well understood. Release-recapture techniques by using marked insects is a useful approach for dispersal studies; however, the marking technique should not significantly affect insect biology or behavior. Therefore, the effect of different concentrations of oil-soluble dyes (Solvent Blue 35 [C.I. 61554], Sudan Red 7B [C.I. 26050], Sudan Black B [26150], Sudan Orange G [C.I. 11920], and Sudan I 103624 [C.I. 12055]) on development, mortality, and fecundity of S. frugiperda was evaluated. Dyes were added to artificial diet used to feed larvae. Larval and pupal development and mortality, adult longevity, and female fecundity were evaluated. High concentrations (400 and 600 ppm) of all dyes led to longer larval and pupal stages. Adult life span and number of eggs were not affected by the dyes. Sudan Red 7B marked both adults and eggs very well. Solvent Blue 35 marked both adults and eggs, but the blue-marked eggs could not be distinguished from some bluish eggs laid by nonlabeled females. Adults and eggs were not adequately marked by the Sudan Black B, Sudan Orange G, and Sudan I 103624 (a yellow dye).
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Agronomia (Proteção de Plantas) - FCA
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The larvae of particular Ogmograptis spp. produce distinctive scribbles on some smooth-barked Eucalyptus spp. which are a common feature on many ornamental and forest trees in Australia. However, although they are conspicuous in the environment the systematics and biology of the genus has been poorly studied. This has been addressed through detailed field and laboratory studies of their biology of three species (O. racemosa Horak sp. nov., O. fraxinoides Horak sp. nov., O. scribula Meyrick), in conjunction with a comprehensive taxonomic revision support by a molecular phylogeny utilising the mitochondrial Cox1 and nuclear 18S genes. In brief, eggs are laid in bark depressions and the first instar larvae bore into the bark to the level where the future cork cambium forms (the phellegen). Early instar larvae bore wide, arcing tracks in this layer before forming a tighter zig-zag shaped pattern. The second last instar turns and bores either closely parallel to the initial mine or doubles its width, along the zig-zag shaped mine. The final instar possesses legs and a spinneret (unlike the earlier instars) and feeds exclusively on callus tissue which forms within the zig-zag shaped mine formed by the previous instar, before emerging from the bark to pupate at the base of the tree. The scars of mines them become visible scribble following the shedding of bark. Sequence data confirm the placement of Ogmograptis within the Bucculatricidae, suggest that the larvae responsible for the ‘ghost scribbles’ (unpigmented, raised scars found on smooth-barked eucalypts) are members of the genus Tritymba, and support the morphology-based species groups proposed for Ogmograptis. The formerly monotypic genus Ogmograptis Meyrick is revised and divided into three species groups. Eleven new species are described: Ogmograptis fraxinoides Horak sp. nov., Ogmograptis racemosa Horak sp. nov. and Ogmograptis pilularis Horak sp. nov. forming the scribula group with Ogmograptis scribula Meyrick; Ogmograptis maxdayi Horak sp. nov., Ogmograptis barloworum Horak sp. nov., Ogmograptis paucidentatus Horak sp. nov., Ogmograptis rodens Horak sp. nov., Ogmograptis bignathifer Horak sp. nov. and Ogmograptis inornatus Horak sp. nov. as the maxdayi group; Ogmograptis bipunctatus Horak sp. nov., Ogmograptis pulcher Horak sp. nov., Ogmograptis triradiata (Turner) comb. nov. and Ogmograptis centrospila (Turner) comb. nov. as the triradiata group. Ogmograptis notosema (Meyrick) cannot be assigned to a species group as the holotype has not been located. Three unique synapomorphies, all derived from immatures, redefine the family Bucculatricidae, uniting Ogmograptis, Tritymba Meyrick (both Australian) and Leucoedemia Scoble & Scholtz (African) with Bucculatrix Zeller, which is the sister group of the southern hemisphere genera. The systematic history of Ogmograptis and the Bucculatricidae is discussed.
Resumo:
The influence of insect attack on bud fall and subsequent poor flowering in cultivated hibiscus (Hibiscus rosa-sinensis) was studied in cages and in the field in southern Queensland. Three species of Hemiptera (most importantly Aulacosternum nigrorubrum but also Nezara viridula and Tectocoris diophthalmus) caused some bud fall in 2 plantations studied. Adults of Macroura concolor suppressed flowering for long periods in spring and summer. Data from white funnel traps and counts in flowers showed that M. concolor was most active in these seasons. Methiocarb (0.75 g a.i./litre) reduced beetle numbers and increased flowering. When 15 or more adults of M. concolor occurred per bud (or flower) most buds fell and few flowers were produced, but when beetles declined to 10 or fewer many buds survived and widespread flowering occurred. Larvae fed in fallen buds and flowers and the mean duration of development of the combined immature stages was 14 days at 26 deg C. The preference of adults of M. concolor for pale coloured flowers was examined. Hibiscus plants produced most buds from December to June with lower numbers in winter and spring (July to November). Bud production in spring and early summer (September-December) varied greatly and probably contributed to poor flowering, however, even when large numbers of buds occurred very few flowers were produced because of the activities of M. concolor.