998 resultados para initial crack


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Initial crack widely exists in the welded members of steel bridge induced by the welding procedure or by the fatigue damage crack initiation. The behavior of crack growth with a view to fatigue damage accumulation on the tip of cracks is discussed. Fatigue life of welded components with initial crack in bridges under traffic loading is investigated. Based on existing fatigue experiment results of welded members with initial crack and the fatigue experiment results of welded bridge members under constant stress cycles, the crack would keep semi-elliptical shape with variable ratio of a/c during the crack propagation. Based on the concept of continuum damage accumulated on the tip of fatigue cracks,the fatigue damage law suitable for steel bridge members under traffic loading is modified to consider the crack growth.The virtual crack growth method and the semi-elliptical crack shape assumption are proposed in this paper to deduce a new model of fatigue crack growth rate for welded bridge members under traffic loading. And the calculated method of the stress intensity factor necessary for evaluation of the fatigue life of welded bridge members with cracks is discussed.The proposed fatigue crack growth model is then applied to calculate the crack growth and the fatigue life of existing welded members with fatigue experimental results. The fatigue crack propagation computation results show that the ratio of crack depth to the half crack surface length a/c is variable during crack propagation process and the stress cycle increases with the increase of a0/c0 with certain a0/t0 .The calculated and measured fatigue lives are generally in good agreement,at some initial conditions of cracking, for welded members widely used in steel bridges.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

It is well known that fatigue in concrete causes excessive deformations and cracking leading to structural failures. Due to quasi-brittle nature of concrete and formation of a fracture process zone, the rate of fatigue crack growth depends on a number of parameters, such as, the tensile strength, fracture toughness, loading ratio and most importantly the structural size. In this work, an analytical model is proposed for estimating the fatigue crack growth in concrete by using the concepts of dimensional analysis and including the above parameters. Knowing the governed and the governing parameters of the physical problem and by using the concepts of self-similarity, a relationship is obtained between different parameters involved. It is shown that the proposed fatigue law is able to capture the size effect in plain concrete and agrees well with different experimental results. Through a sensitivity analysis, it is shown that the structural size plays a dominant role followed by loading ratio and the initial crack length in fatigue crack propagation. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Deformation twinning near a crack tip is observed in b.c.c. metal Mo based on molecular dynamics simulation at temperature T = 50 K and loading rate (K) over dot(II) = 0.0706 MPa m(1/2)/ps. The defor mation twinning is closely controlled by both the crystal geometry orientation and the stress distribution. The width of the deformation twin band is affected by the distance between the upper and lower crack surfaces. The twin plane and twin direction are (<1(1)over bar>2) and [(1) over bar 11], respectively. The initial crack extension occurs in the deformation twin region near the crack tip. The simulation shows that the extension direction of the crack is changed as the crack propagates over the twinning boundary.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Crack paths in an elastic layer on top of a substrate are considered. Crack growth is initiated from an edge crack in the layer. The plane of the initially straight crack forms an angle to the free surface. The load consists of a pair of forces applied at the crack mouth and parallel to the interface. Crack paths are calculated using a boundary element method. Crack growth is assumed to proceed along a path for which the mode II stress intensity factor vanishes. The inclination and the length of the initial crack are varied. The effect of two different substrates on the crack path evolution is demonstrated. A crack path initially leading perpendicularly to the interface is shown to be directionally unstable for a rigid substrate. Irrespective of its initial angle, the crack does not reach the interface, but reaches the free surface if the layer is infinitely long. At finite layer length the crack reaches the upper free surface if the initial crack inclination to the surface is small enough. For an inextendable flexible substrate, on the other hand, the crack reaches the interface if its initial inclination is large enough. For the flexible substrate an unstable path parallel with the sides of an infinitely long layer is identified. The results are compared with experimental results and discussed in view of characterisation of directionally unstable crack paths. The energy release rate for an inclined edge crack is determined analytically.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Cyclic loading of a plane strain mode I crack under small scale yielding is analyzed using discrete dislocation dynamics. The dislocations are all of edge character, and are modeled as line singularities in an elastic solid. At each stage of loading, superposition is used to represent the solution in terms of solutions for edge dislocations in a half-space and a non-singular complementary solution that enforces the boundary conditions, which is obtained from a linear elastic, finite element solution. The lattice resistance to dislocation motion, dislocation nucleation, dislocation interaction with obstacles and dislocation annihilation are incorporated into the formulation through a set of constitutive rules. An irreversible relation between the opening traction and the displacement jump across a cohesive surface ahead of the initial crack tip is also specified, which permits crack growth to emerge naturally. It is found that crack growth can occur under cyclic loading conditions even when the peak stress intensity factor is smaller than the stress intensity required for crack growth under monotonic loading conditions; however below a certain threshold value of ΔKI no crack growth was seen.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In an earlier study on intersonic crack propagation, Gao et al. (J. Mech. Phys. Solids 49: 2113-2132, 2001) described molecular dynamics simulations and continuum analysis of the dynamic behaviors of a mode II dominated crack moving along a weak plane under a constant loading rate. The crack was observed to initiate its motion at a critical time after the onset of loading, at which it is rapidly accelerated to the Rayleigh wave speed and propagates at this speed for a finite time interval until an intersonic daughter crack is nucleated at a peak stress at a finite distance ahead of the original crack tip. The present article aims to analyze this behavior for a mode III crack moving along a bi-material interface subject to a constant loading rate. We begin with a crack in an initially stress-free bi-material subject to a steadily increasing stress. The crack initiates its motion at a critical time governed by the Griffith criterion. After crack initiation, two scenarios of crack propagation are investigated: the first one is that the crack moves at a constant subsonic velocity; the second one is that the crack moves at the lower shear wave speed of the two materials. In the first scenario, the shear stress ahead of the crack tip is singular with exponent -1/2, as expected; in the second scenario, the stress singularity vanishes but a peak stress is found to emerge at a distance ahead of the moving crack tip. In the latter case, a daughter crack supersonic with respect to the softer medium can be expected to emerge ahead of the initial crack once the peak stress reaches the cohesive strength of the interface.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents a new approach by making use of a hybrid method of using the displacement discontinuity element method and direct boundary element method to model concrete cracking by incorporating fictitious crack model. Fracture mechanics approach is followed using the Hillerborg's fictitious crack model. A boundary element based substructure method and a hybrid technique of using displacement discontinuity element method and direct boundary element method are compared in this paper. In order to represent the process zone ahead of the crack, closing forces are assumed to act in such a way that they obey a linear normal stress-crack opening displacement law. Plain concrete beams with and without initial crack under three-point loading were analyzed by both the methods. The numerical results obtained were shown to agree well with the results from existing finite element method. The model is capable of reproducing the whole range of load-deflection response including strain-softening and snap-back behavior as illustrated in the numerical examples. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Thermal failure of SiC particulate-reinforced 6061 aluminum alloy composites induced by both laser thermal shock and mechanical load has been investigated. The specimens with a single-edge notch were mechanically polished to 0.25 mm in thickness. The notched-tip region of the specimen is subjected to laser beam rapid heating. In the test, a pulsed Nd:glass laser beam is used with duration 1.0 ms or 250 mu s, intensity 15 or 70 kW/cm(2), and spot size 5.0 mm in diameter. Threshold intensity was tested and fracture behavior was studied. The crack-tip process zone development and the microcrack formation were macroscopically and microscopically observed. It was found that in these materials, the initial crack occurred in the notched-tip region, wherein the initial crack was induced by either void nucleation, growth, and subsequent coalescence of the matrix materials or separation of the SiC particulate-matrix interface. It was further found that the process of the crack propagation occurred by the fracture of the SiC particulates.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hot Dip Aluminized Coatings with different thickness were prepared on Q235 steel in aluminum solutions with different temperature for certain time. Through tensile tests and in-situ SEM observations, the effect of the coating's microstructure on the tensile strength of the samples was studied. It was disclosed at certain aluminum solution temperature,transaction layers mainly composed of Fe2 Al5 phase got thicker with time prolonging, and this changed initial crack's extending direction from parallel with to vertical with stretching direction. The change in crack direction decreased tensile strength of samples, thus made the coating easy to break. It was concluded that the existence of thick Fe2 Al5 phase layer was the basic reason for the lowering of tensile strength of the coating.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Numerous experimental studies of damage in composite laminates have shown that intralaminar (in-plane) matrix cracks lead to interlaminar delamination (out-of-plane) at ply interfaces. The smearing of in-plane cracks over a volume, as a consequence of the use of continuum damage mechanics, does not always effectively capture the full extent of the interaction between the two failure mechanisms. A more accurate representation is obtained by adopting a discrete crack approach via the use of cohesive elements, for both in-plane and out-of-plane damage. The difficulty with cohesive elements is that their location must be determined a priori in order to generate the model; while ideally the position of the crack migration, and more generally the propagation path, should be obtained as part of the problem’s solution. With the aim of enhancing current modelling capabilities with truly predictive capabilities, a concept of automatic insertion of interface elements is utilized. The consideration of a simple traction criterion in relation to material strength, evaluated at each node of the model (or of the regions of the model where it is estimated cracks might form), allows for the determination of initial crack location and subsequent propagation by the insertion of cohesive elements during the course of the analysis. Several experimental results are modelled using the commercial package ABAQUS/Standard with an automatic insertion subroutine developed in this work, and the results are presented to demonstrate the capabilities of this technique.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Piezoelectrics present an interactive electromechanical behaviour that, especially in recent years, has generated much interest since it renders these materials adapt for use in a variety of electronic and industrial applications like sensors, actuators, transducers, smart structures. Both mechanical and electric loads are generally applied on these devices and can cause high concentrations of stress, particularly in proximity of defects or inhomogeneities, such as flaws, cavities or included particles. A thorough understanding of their fracture behaviour is crucial in order to improve their performances and avoid unexpected failures. Therefore, a considerable number of research works have addressed this topic in the last decades. Most of the theoretical studies on this subject find their analytical background in the complex variable formulation of plane anisotropic elasticity. This theoretical approach bases its main origins in the pioneering works of Muskelishvili and Lekhnitskii who obtained the solution of the elastic problem in terms of independent analytic functions of complex variables. In the present work, the expressions of stresses and elastic and electric displacements are obtained as functions of complex potentials through an analytical formulation which is the application to the piezoelectric static case of an approach introduced for orthotropic materials to solve elastodynamics problems. This method can be considered an alternative to other formalisms currently used, like the Stroh’s formalism. The equilibrium equations are reduced to a first order system involving a six-dimensional vector field. After that, a similarity transformation is induced to reach three independent Cauchy-Riemann systems, so justifying the introduction of the complex variable notation. Closed form expressions of near tip stress and displacement fields are therefore obtained. In the theoretical study of cracked piezoelectric bodies, the issue of assigning consistent electric boundary conditions on the crack faces is of central importance and has been addressed by many researchers. Three different boundary conditions are commonly accepted in literature: the permeable, the impermeable and the semipermeable (“exact”) crack model. This thesis takes into considerations all the three models, comparing the results obtained and analysing the effects of the boundary condition choice on the solution. The influence of load biaxiality and of the application of a remote electric field has been studied, pointing out that both can affect to a various extent the stress fields and the angle of initial crack extension, especially when non-singular terms are retained in the expressions of the electro-elastic solution. Furthermore, two different fracture criteria are applied to the piezoelectric case, and their outcomes are compared and discussed. The work is organized as follows: Chapter 1 briefly introduces the fundamental concepts of Fracture Mechanics. Chapter 2 describes plane elasticity formalisms for an anisotropic continuum (Eshelby-Read-Shockley and Stroh) and introduces for the simplified orthotropic case the alternative formalism we want to propose. Chapter 3 outlines the Linear Theory of Piezoelectricity, its basic relations and electro-elastic equations. Chapter 4 introduces the proposed method for obtaining the expressions of stresses and elastic and electric displacements, given as functions of complex potentials. The solution is obtained in close form and non-singular terms are retained as well. Chapter 5 presents several numerical applications aimed at estimating the effect of load biaxiality, electric field, considered permittivity of the crack. Through the application of fracture criteria the influence of the above listed conditions on the response of the system and in particular on the direction of crack branching is thoroughly discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We use a fracture mechanics model to study subcritical propagation and coalescence of single and collinear oil-filled cracks during conversion of kerogen to oil. The subcritical propagation distance, propagation duration, crack coalescence and excess oil pressure in the crack are determined using the fracture mechanics model together with the kinetics of kerogen-oil transformation. The propagation duration for the single crack is governed by the transformation kinetics whereas the propagation duration for the multiple collinear cracks may vary by two orders of magnitude depending on initial crack spacing. A large amount of kerogen (>90%) remains unconverted when the collinear cracks coalesce and the new, larger cracks resulting from coalescence will continue to propagate with continued kerogen-oil conversion. The excess oil pressure on the crack surfaces drops precipitously when the collinear cracks are about to coalesce, and crack propagation duration and oil pressure on the crack surfaces are strongly dependent on temperature. Citation: Jin, Z.-H., S. E. Johnson, and Z. Q. Fan (2010), Subcritical propagation and coalescence of oil-filled cracks: Getting the oil out of low-permeability source rocks, Geophys. Res. Lett., 37, L01305, doi:10.1029/2009GL041576.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The paper addresses the fracture propagation and stress corrosion behaviour of laser hybrid welds achieved between low carbon steel and stainless steel thin sheets. The crack propagation within these overmatched in strength welds was investigated by crack tip opening displacement (CTOD) on CT specimens notched transverse to the weld. A Digital Image Correlation System was used to qualify and estimate the initial crack length obtained by fatigue. The results are associated with the fractographic examinations of various regions of laser hybrid joints. Stress corrosion behaviour of the joint is also discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The growth of a single cylindrical hole ahead of a blunt crack tip was studied using large deformation finite element analysis in three-point bend specimens with different precrack depth. The effect of small second phase particles was taken into account by incorporating Gurson’s constitutive equation. The effects of strain hardening and the initial distance from the hole to the crack tip were also investigated. The results show that the variation of crack tip opening displacement with load is not sensitive to constraint level. The effects of constraint on the growth of hole and ductile initiation toughness are diminished with decreasing initial distance from the hole to the blunt crack tip.