933 resultados para inhibitory activity
Resumo:
The antitumor activity of Image -asparagine amidohydrolases (EC 3.5.1.1) from Mycobacterium tuberculosis H37Rv and H37Ra strains has been tested on Yoshida ascites sarcoma in rats. The enzyme specific to M. tuberculosis H37Ra but not to H37Rv has proved to be effective in inhibiting the growth of the sarcoma. Comparative studies on the activity of this enzyme with that of similar enzyme from Escherichia coli B, has shown that at the same levels the former is more effective than the latter. Long-lived immunity to this tumor in A/IISc Wistar rats following treatment of tumor bearing animals with M. tuberculosis H37Ra, pH 9.6 Image -asparaginase has been observed. Immunity in these rats was demonstrated by tumor rejection and detection of humoral antibodies in the sera to the antigen of the cell-free extract of the tumor. The enzyme was ineffective in inhibiting fibrosarcoma in mice at the dose levels tested.
Resumo:
A novel trypsin inhibitor termed BATI was purified to homogeneity from the skin extracts of toad Bufo andrewsi by successive ion-exchange, gel-filtration and reverse-phase chromatography. BATI is basic single chain glycoprotein, with apparent molecular weight of 22 kDa in SDS-PAGE. BATI is a thermal stable competitive inhibitor and effectively inhibits trypsin's catalytic activity on peptide substrate with the inhibitor constant (K-i) value of 14 nM and shows no inhibitory effect on chymotrypsin, thrombin and elastase. The N-terminal sequence of BATI is EKDSITD, which shows no similarity with other known trypsin inhibitors. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Two new cucurbitacins, endecaphyllacins A (1) and B (2), together with six known analogues (3-8), were isolated from the tubers of Hemsleya endecaphylla. The structures of 1 and 2 were elucidated by NMR and MS spectroscopic analysis. The relative stereoch
Resumo:
In recent years there has been a resurgence of interest in inhibitors of cyclic nucleotide phosphodiesterases (PDE) and enzymes responsible for the intracellular hydrolysis of the second messenger cAMP and cGMP. In this study, a series of 2-substituted phenyllimidazo[4,5-b]pyridines have been made to investigate 3D-QSAR of PDE activity using CoMFA. CoMFA resulted in a quantitative description of the major steric and electrostatic field effects, and gave significant new insights to factors governing PDE inhibition activity. The model was used to predict the PDE inhibition activity of imidazopyridines with satisfactory results.
Resumo:
Serine proteinase inhibitors (SPIs) play important roles in host physiological and immunological processes in all multicellular organisms. A novel Kazal-type SPI gene was cloned from the Zhikong scallop Chlamys farreri (designated as CfKZSPI) by expressed sequence tag (EST) and rapid amplification of cDNA ends (RACE) approaches. The full-length cDNA of CfKZSPI was of 1788 nucleotides with a canonical polyadenylation signal sequence AATAAA and a polyA tail, and an open reading frame (ORF) encoding a polypeptide of 509 amino acids with a putative signal peptide of 22 amino acids. The deduced amino acid sequence of CfKZSPI contained 12 tandem Kazal domains with high similarity to other Kazal-type SPIs. The temporal expression of CfKZSPI in hemocytes after Vibrio anguillorum challenge was recorded by quantitative real-time RT-PCR. The relative mRNA expression level of CfKZSPI was up-regulated and reached 43.6-fold at 3 h post-challenge. After a decrease at 6 h, the expression Level increased again and reached 207.8-fold at 12 h post-challenge. The 12th Kazal domain of CfKZSPI was recombined into pET-32a(+) and expressed in Escherichia coli Rosetta-gami (DE3) to investigate its inhibitory activity. The purified recombinant protein (rCf KZSPI-1 2) showed significant inhibitory activity against trypsin but no activity against thrombin. When the molar ratio of inhibitor to trypsin reached 1:1, almost 90% of the enzyme activity could be inhibited, which suggested that one molecule of rCfKZSPI-12 was able to inhibit one molecule of trypsin. Kinetics analysis with Dixon plot showed that the inhibition constant (K-i) of rCfKZSPI-12 to trypsin was 173 nmol L-1. These results indicated that CfKZSPI was a novel Kazal-type SPI with significant inhibitory activity against trypsin, and was suspected to be involved in scallop immune response. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
In order to explore the inhibitory mechanism of coumarins toward aldose reductase (ALR2), AutoDock and Gromacs software were used for docking and molecular dynamics studies on 14 coumarins (CM) and ALR2 protease. The docking results indicate that residues TYR48, HIS110, and TRP111 construct the active pocket of ALR2 and, besides van der Waals and hydrophobic interaction, CM mainly interact with ALR2 by forming hydrogen bonds to cause inhibitory behavior. Except for CM1, all the other coumarins take the lactone part as acceptor to build up the hydrogen bond network with active-pocket residues. Unlike CM3, which has two comparable binding modes with ALR2, most coumarins only have one dominant orientation in their binding sites. The molecular dynamics calculation, based on the docking results, implies that the orientations of CM in the active pocket show different stabilities. Orientation of CM1 and CM3a take an unstable binding mode with ALR2; their conformations and RMSDs relative to ALR2 change a lot with the dynamic process. While the remaining CM are always hydrogen-bonded with residues TYR48 and HIS110 through the carbonyl O atom of the lactone group during the whole process, they retain the original binding mode and gradually reach dynamic equilibrium.
Resumo:
A study of the components of the fruits of Kigelia pinnata was undertaken to identify compounds with potential growth inhibitory activity against human melanoma cells, since extracts from the fruits of this plant have been described in traditional medicine to have application in the treatment of skin cancer and other skin ailments. A bioactivity-guided fractionation process yielded a number of crude fractions, which demonstrated cytotoxicity in vitro against human melanoma cells. Compounds isolated and identified included the isocoumarins, demethylkigelin (1) and kigelin 2), fatty acids, oleic (3) and heneicosanoic acids (4), the furonaphthoquinone, 2-(1-hydroxyethyl)-naphtho[2,3-b]furan-4,9-dione (5), and ferulic acid (6). A number of structurally related synthetic compounds were also tested using the MTT assay. The most potent series of these compounds, the furonaphthoquinones, also demonstrated a cytotoxic effect in two human breast cancer cell lines tested.
Resumo:
Purpose: Inhibitors of intestinal alpha-glucosidases are used therapeutically to treat type 2 diabetes mellitus. Bacteria such as Actinoplanes sp. naturally produce potent alpha-glucosidase inhibitor compounds, including the most widely available drug acarbose. It is not known whether lactic acid bacteria (LAB) colonising the human gut possess inhibitory potential against glucosidases. Hence, the study was undertaken to screen LABs having inherent alpha- and beta-glucosidase inhibitory potential. Methods: This study isolated, screened, identified and extracted Lactobacillus strains (Lb1–15) from human infant faecal samples determining their inhibitory activity against intestinal maltase, sucrase, lactase and amylase. Lactobacillus reference strains (Ref1–7), a Gram positive control (Ctrl1) and two Gram negative controls (Ctrl2–3), were also analysed to compare activity. Results: Faecal isolates were identified by DNA sequencing, with the majority identified as unique strains of Lactobacillus plantarum. Some strains (L. plantarum, L. fermentum, L. casei and L. rhamnosus) had potent and broad spectrum inhibitory activities (up to 89 %; p < 0.001; 500 mg/ml wet weight) comparable to acarbose (up to 88 %; p < 0.001; 30 mg/ml). Inhibitory activity was concentration-dependent and was freely available in the supernatant, and was not present in other bacterial genera (Bifidobacterium bifidum and Escherichia coli or Salmonella typhimurium). Interestingly, the potency and spectrum of inhibitory activity across strains of a single species (L. plantarum) differed substantially. Some Lactobacillus extracts had broader spectrum activities than acarbose, effectively inhibiting beta-glucosidase activity (lactase) as well as alpha-glucosidase activities (maltase, sucrase and amylase). Anti-diabetic potential was indicated by the fact that oral gavage with a L. rhamnosus extract (1 g/kg) was able to reduce glucose excursions (Area under curve; 22 %; p < 0.05) in rats during a carbohydrate challenge (starch; 2 g/kg). Conclusion: These results definitively demonstrate that Lactobacillus strains present in the human gut have alpha- and beta-glucosidase inhibitory activities and can reduce blood glucose responses in vivo. Although the potential use of LAB such as Lactobacillus as a dietary supplement, medicinal food or biotherapeutic for diabetes is uncertain, such an approach might offer advantages over drug therapies in terms of broader spectrum activities and fewer unpleasant side effects. Further characterisation of this bioactivity is warranted, and chronic studies should be undertaken in appropriate animal models or diabetic subjects.
Resumo:
Ethnopharmacological relevance
The two plants investigated here (Fagonia cretica L. and Hedera nepalensis K. Koch) have been previously reported as natural folk medicines for the treatment of diabetes but until now no scientific investigation of potential anti-diabetic effects has been reported.
Materials and methods
In vitro inhibitory effect of the two tested plants and their five isolated compounds on the dipeptidyl peptidase 4 (DPP-4) was studied for the assessment of anti-diabetic activity.
Results
A crude extract of Fagonia cretica possessed good inhibitory activity (IC50value: 38.1 μg/ml) which was also present in its n-hexane (FCN), ethyl acetate (FCE) or aqueous (FCA) fractions. A crude extract of Hedera nepalensis (HNC) possessed even higher inhibitory activity (IC50value: 17.2 μg/ml) and this activity was largely retained when further fractionated in either ethyl acetate (HNE; IC50: 34.4 μg/ml) or n-hexane (HNN; 34.2 μg/ml). Bioactivity guided isolation led to the identification of four known compounds (isolated for the first time) from Fagonia cretica: quinovic acid (1), quinovic acid-3β-O-β-d-glycopyranoside (2), quinovic acid-3β-O-β-d-glucopyranosyl-(28→1)-β-d-glucopyranosyl ester (3), and stigmasterol (4) all of which inhibited DPP-4 activity (IC50: 30.7, 57.9, 23.5 and >100 μM, respectively). The fifth DPP-4 inhibitor, the triterpenoid lupeol (5) was identified in Hedera nepalensis (IC50: 31.6 μM).
Conclusion
The experimental study revealed that Fagonia cretica and Hedera nepalensis contain compounds with significant DPP-4 inhibitory activity which should be further investigated for their anti-diabetic potential.
Resumo:
Dipeptidyl peptidase 4 (DPP-4) enzymatically inactivates incretin hormones, and DPP-4 inhibitor drugs are clinically approved therapies for type 2 diabetes. The primary substrates of DPP-4 are produced in the intestinal lining and we therefore investigated whether lactobacilli colonizing the gut can inhibit this enzyme. Fifteen Lactobacillus strains (Lb 1-15) from human infant faecal samples were isolated, identified, extracted and screened for inhibitory activity against DPP-4. Activity was compared against Lactobacillus reference strains (Ref 1-7), a Gram positive control (Ctrl 1) and two Gram negative controls (Ctrl 2-3). A range of DPP-4 inhibitory activity was observed (10-32%; P<0.05-0.001). Strains of L. fabifermentans (25%), L. plantarum (12-24%) and L. fermentum (14%) had significant inhibitory activity. However, we also noted that E. coli (Ctrl 2) and S. Typhimurium (Ctrl 3) had the greatest inhibitory activity (30-32%). Contrastingly, some isolates (Lb 12-15) and reference cultures (Ref 1-4) instead of inhibiting DPP-4 actually enhanced it, perhaps indicating the presence of X-prolyl-dipeptidyl-amino-peptidase (PepX). This provides a future rationale for using probiotic bacteria or their components for management of type 2 diabetes via DPP-4 inhibition.
Resumo:
The ruthenium(II)-cymene complexes [Ru(eta(6)-cymene)(bha)Cl] with substituted halogenobenzohydroxamato (bha) ligands (substituents = 4-F, 4-Cl, 4-Br, 2,4-F-2, 3,4-F-2, 2,5-F-2, 2,6-F-2) have been synthesized and characterized by elemental analysis, IR, H-1 NMR, C-13 NMR, cyclic voltammetry and controlled-potential electrolysis, and density functional theory (DFT) studies. The compositions of their frontier molecular orbitals (MOs) were established by DFT calculations, and the oxidation and reduction potentials are shown to follow the orders of the estimated vertical ionization potential and electron affinity, respectively. The electrochemical E-L Lever parameter is estimated for the first time for the various bha ligands, which can thus be ordered according to their electron-donor character. All complexes exhibit very strong protein tyrosine kinase (PTK) inhibitory activity, even much higher than that of genistein, the clinically used PTK inhibitory drug. The complex containing the 2,4-difluorobenzohydroxamato ligand is the most active one, and the dependences of the PTK activity of the complexes and of their redox potentials on the ring substituents are discussed. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
A series of novel naphthyridine derivatives 3 and 4 was prepared from substituted pyridine 2 and ketones using ZnCl2 as catalyst under microwave irradiation conditions. All the compounds were evaluated for AChE inhibitory activity and promising compounds 3d, 3e, 4b, and 4g was identified. Representative compounds 3d and 3e were found to show insignificant THLE-2 liver cell viability/toxicity. The binding mode between X-ray crystal structure of human AChE and compounds was studied using molecular docking method and fitness scores were found to be in good correlation with the activity data.
Resumo:
The antioxidant and tyrosinase inhibitory properties of extracts of mango seed kernel (Mangifera indica L.), which is normally discarded when the fruit is processed, were studied. Extracts contained phenolic components by a high antioxidant activity, which was assessed in homogeneous solution by the 2,2-diphenyt-1-picrylhydrazyl radical and 2,2'-azinobis (3-ethylbenzothialozinesulfonic acid) radical cation-scavenging assays and in an emulsion with the ferric thiocyanate test. The extracts also possessed tyrosinase inhibitory activity. Drying conditions and extraction solvent were varied, and optimum conditions for preparation of mango seed kernel extract were found to be sun-drying with ethanol extraction at room temperature. Refluxing in acidified ethanol gave an increase in yield and the obtained extract had the highest content of total phenolics, and also was the most effective antioxidant with the highest radical-scavenging, metal-chelating and tyrosinase inhibitory activity. The extracts did not cause acute irritation of rabbit skins. Our study for the first time reveals the high total phenol content, radical-scavenging, metal-chelating and tyrosinase inhibitory activities of the extract from mango seed kernel. This extract may be suitable for use in food, cosmetic, nutraceutical and pharmaceutical applications. (C) 2009 Elsevier Ltd. All rights reserved.