42 resultados para informativeness
Resumo:
Often, firms have no information on the specification of the true demand model they are faced with. It is, however, a well established fact that trial-and-error algorithms may be used by them in order to learn how to make optimal decisions. Using experimental methods, we identify a property of the information on past actions which helps the seller of two asymmetric demand substitutes to reach the optimal prices more precisely and faster. The property concerns the possibility of disaggregating changes in each product’s demand into client exit/entry and shift from one product to the other.
Resumo:
A basic element in advertising strategy is the choice of an appeal. Many researchers have studied communication message form and specifically forms of literalism and symbolism, or some variation. The motives for such study are grounded in increasing the effectiveness of commercial communication messages, especially advertising messages. Advertising research studies typically use forms of literalism (e.g. informativeness) or symbolism (e.g. metaphoric, tropes, schemes figures of speech, and rhetorical figures) as independent variables and compare these against one or more of the traditional advertising effectiveness measures as dependent variable(s). The main challenge in assessing the effectiveness of literalism or symbolism in message content is the discreet identification of the construct. However, no standard, empirically-tested measure was located in the literature.
Resumo:
Using a sample of 2,200 US listed firm year observations (2001-2007)this study shows a positive (negative) relation between female participation in corporate boards and analysts' earnings forecast accuracy (dispersion), after controlling for earnings quality, corporate governance, audit quality, stock price informativeness and potential endogeneity. Our findings are important as they suggest that board diversity adds to the transparency and accuracy of financial reports such that earnings expectations are likely to be more accurate for these firms.
Resumo:
This paper presents a new active learning query strategy for information extraction, called Domain Knowledge Informativeness (DKI). Active learning is often used to reduce the amount of annotation effort required to obtain training data for machine learning algorithms. A key component of an active learning approach is the query strategy, which is used to iteratively select samples for annotation. Knowledge resources have been used in information extraction as a means to derive additional features for sample representation. DKI is, however, the first query strategy that exploits such resources to inform sample selection. To evaluate the merits of DKI, in particular with respect to the reduction in annotation effort that the new query strategy allows to achieve, we conduct a comprehensive empirical comparison of active learning query strategies for information extraction within the clinical domain. The clinical domain was chosen for this work because of the availability of extensive structured knowledge resources which have often been exploited for feature generation. In addition, the clinical domain offers a compelling use case for active learning because of the necessary high costs and hurdles associated with obtaining annotations in this domain. Our experimental findings demonstrated that 1) amongst existing query strategies, the ones based on the classification model’s confidence are a better choice for clinical data as they perform equally well with a much lighter computational load, and 2) significant reductions in annotation effort are achievable by exploiting knowledge resources within active learning query strategies, with up to 14% less tokens and concepts to manually annotate than with state-of-the-art query strategies.
Resumo:
BACKGROUND Given moderately strong genetic contributions to variation in alcoholism and heaviness of drinking (50% to 60% heritability) with high correlation of genetic influences, we have conducted a quantitative trait genome-wide association study (GWAS) for phenotypes related to alcohol use and dependence. METHODS Diagnostic interview and blood/buccal samples were obtained from sibships ascertained through the Australian Twin Registry. Genome-wide single nucleotide polymorphism (SNP) genotyping was performed with 8754 individuals (2062 alcohol-dependent cases) selected for informativeness for alcohol use disorder and associated quantitative traits. Family-based association tests were performed for alcohol dependence, dependence factor score, and heaviness of drinking factor score, with confirmatory case-population control comparisons using an unassessed population control series of 3393 Australians with genome-wide SNP data. RESULTS No findings reached genome-wide significance (p = 8.4 x 10(-8) for this study), with lowest p value for primary phenotypes of 1.2 x 10(-7). Convergent findings for quantitative consumption and diagnostic and quantitative dependence measures suggest possible roles for a transmembrane protein gene (TMEM108) and for ANKS1A. The major finding, however, was small effect sizes estimated for individual SNPs, suggesting that hundreds of genetic variants make modest contributions (1/4% of variance or less) to alcohol dependence risk. CONCLUSIONS We conclude that: - 1) meta-analyses of consumption data may contribute usefully to gene discovery; - 2) translation of human alcoholism GWAS results to drug discovery or clinically useful prediction of risk will be challenging, and; - 3) through accumulation across studies, GWAS data may become valuable for improved genetic risk differentiation in research in biological psychiatry (e.g., prospective high-risk or resilience studies).
Resumo:
[ES] El presente trabajo analiza la relación entre el control familiar y la credibilidad de los resultados contables. Utilizando un panel de datos de empresas españolas cotizadas no financieras para el período 1997-2003, los resultados alcanzados muestran que la credibilidad de la información contable de la empresa familiar es inferior a la de la no familiar. Asimismo, el incremento de los derechos de voto en manos del último propietario familiar incide negativamente en la credibilidad de sus resultados divulgados. Las únicas empresas en las que la naturaleza familiar incide positivamente en la credibilidad de la información contable son aquellas en las que el presidente del consejo de administración no pertenece a la familia controladora.
Resumo:
The intent of this study is to provide formal apparatus which facilitates the investigation of problems in the methodology of science. The introduction contains several examples of such problems and motivates the subsequent formalism.
A general definition of a formal language is presented, and this definition is used to characterize an individual’s view of the world around him. A notion of empirical observation is developed which is independent of language. The interplay of formal language and observation is taken as the central theme. The process of science is conceived as the finding of that formal language that best expresses the available experimental evidence.
To characterize the manner in which a formal language imposes structure on its universe of discourse, the fundamental concepts of elements and states of a formal language are introduced. Using these, the notion of a basis for a formal language is developed as a collection of minimal states distinguishable within the language. The relation of these concepts to those of model theory is discussed.
An a priori probability defined on sets of observations is postulated as a reflection of an individual’s ontology. This probability, in conjunction with a formal language and a basis for that language, induces a subjective probability describing an individual’s conceptual view of admissible configurations of the universe. As a function of this subjective probability, and consequently of language, a measure of the informativeness of empirical observations is introduced and is shown to be intuitively plausible – particularly in the case of scientific experimentation.
The developed formalism is then systematically applied to the general problems presented in the introduction. The relationship of scientific theories to empirical observations is discussed and the need for certain tacit, unstatable knowledge is shown to be necessary to fully comprehend the meaning of realistic theories. The idea that many common concepts can be specified only by drawing on knowledge obtained from an infinite number of observations is presented, and the problems of reductionism are examined in this context.
A definition of when one formal language can be considered to be more expressive than another is presented, and the change in the informativeness of an observation as language changes is investigated. In this regard it is shown that the information inherent in an observation may decrease for a more expressive language.
The general problem of induction and its relation to the scientific method are discussed. Two hypotheses concerning an individual’s selection of an optimal language for a particular domain of discourse are presented and specific examples from the introduction are examined.
Resumo:
This thesis is an investigation into the nature of data analysis and computer software systems which support this activity.
The first chapter develops the notion of data analysis as an experimental science which has two major components: data-gathering and theory-building. The basic role of language in determining the meaningfulness of theory is stressed, and the informativeness of a language and data base pair is studied. The static and dynamic aspects of data analysis are then considered from this conceptual vantage point. The second chapter surveys the available types of computer systems which may be useful for data analysis. Particular attention is paid to the questions raised in the first chapter about the language restrictions imposed by the computer system and its dynamic properties.
The third chapter discusses the REL data analysis system, which was designed to satisfy the needs of the data analyzer in an operational relational data system. The major limitation on the use of such systems is the amount of access to data stored on a relatively slow secondary memory. This problem of the paging of data is investigated and two classes of data structure representations are found, each of which has desirable paging characteristics for certain types of queries. One representation is used by most of the generalized data base management systems in existence today, but the other is clearly preferred in the data analysis environment, as conceptualized in Chapter I.
This data representation has strong implications for a fundamental process of data analysis -- the quantification of variables. Since quantification is one of the few means of summarizing and abstracting, data analysis systems are under strong pressure to facilitate the process. Two implementations of quantification are studied: one analagous to the form of the lower predicate calculus and another more closely attuned to the data representation. A comparison of these indicates that the use of the "label class" method results in orders of magnitude improvement over the lower predicate calculus technique.
Resumo:
A presente pesquisa pretende mostrar os desafios que os professores em geral e, em especial, por conta da proposta desta dissertação, os professores do Ensino Fundamental II enfrentam para que seus alunos sejam produtores proficientes de textos orais e escritos. Com base na concepção dos fatores de textualidade desenvolvidos por Beaugrand e Dressler (2002), sustentamos a hipótese de que o texto argumentativo, produzido na escola em condições tradicionais de ensino, sofre de baixo grau de informatividade, entre outros motivos, principalmente por carecerem de um projeto de ensino desta disciplina. A grande questão que se apresenta é como atingir esse propósito. Em geral, redação escolar não é considerada pelas direções, equipes pedagógicas e, algumas vezes, pelos próprios professores como uma disciplina que possa ser ensinada, pois acreditam que o conhecimento gramatical da língua materna e a leitura de textos literários e não literários constituam instrumentos suficientes para que o aluno por si só seja capaz de produzir bons textos. O objetivo maior desta dissertação é refletir acerca dos aspectos relacionados à informatividade nos textos argumentativos produzidos por alunos do nono ano do EF II de uma escola particular do Município do Rio de Janeiro, pertencentes à classe média alta. O corpus da presente pesquisa é constituído de quinze redações com seguintes condições de produção: sete delas foram produzidas com a motivação de um texto apresentado pelo professor, e oito com apenas a apresentação do tema escolhido, também, pelo professor. A partir da análise do corpus e confirmando a hipótese de que é possível e necessário ensinar o aluno a produzir textos, sugere-se uma sequência didática que dá conta do passo a passo pertinente ao aprimoramento da progressão das ideias do tipo textual referido
Resumo:
This paper presents a feature selection method for data classification, which combines a model-based variable selection technique and a fast two-stage subset selection algorithm. The relationship between a specified (and complete) set of candidate features and the class label is modelled using a non-linear full regression model which is linear-in-the-parameters. The performance of a sub-model measured by the sum of the squared-errors (SSE) is used to score the informativeness of the subset of features involved in the sub-model. The two-stage subset selection algorithm approaches a solution sub-model with the SSE being locally minimized. The features involved in the solution sub-model are selected as inputs to support vector machines (SVMs) for classification. The memory requirement of this algorithm is independent of the number of training patterns. This property makes this method suitable for applications executed in mobile devices where physical RAM memory is very limited. An application was developed for activity recognition, which implements the proposed feature selection algorithm and an SVM training procedure. Experiments are carried out with the application running on a PDA for human activity recognition using accelerometer data. A comparison with an information gain based feature selection method demonstrates the effectiveness and efficiency of the proposed algorithm.
Resumo:
In this preliminary case study, we investigate how inconsistency in a network intrusion detection rule set can be measured. To achieve this, we first examine the structure of these rules which incorporate regular expression (Regex) pattern matching. We then identify primitive elements in these rules in order to translate the rules into their (equivalent) logical forms and to establish connections between them. Additional rules from background knowledge are also introduced to make the correlations among rules more explicit. Finally, we measure the degree of inconsistency in formulae of such a rule set (using the Scoring function, Shapley inconsistency values and Blame measure for prioritized knowledge) and compare the informativeness of these measures. We conclude that such measures are useful for the network intrusion domain assuming that incorporating domain knowledge for correlation of rules is feasible.
Resumo:
In this preliminary study, we investigate how inconsistency in a network intrusion detection rule set can be measured. To achieve this, we first examine the structure of these rules which are based on Snort and incorporate regular expression (Regex) pattern matching. We then identify primitive elements in these rules in order to translate the rules into their (equivalent) logical forms and to establish connections between them. Additional rules from background knowledge are also introduced to make the correlations among rules more explicit. We measure the degree of inconsistency in formulae of such a rule set (using the Scoring function, Shapley inconsistency values and Blame measure for prioritized knowledge) and compare the informativeness of these measures. Finally, we propose a new measure of inconsistency for prioritized knowledge which incorporates the normalized number of atoms in a language involved in inconsistency to provide a deeper inspection of inconsistent formulae. We conclude that such measures are useful for the network intrusion domain assuming that introducing expert knowledge for correlation of rules is feasible.
Resumo:
A flexible panel consisting of 38 informative microsatellite markers for Salmo trutta is described. These markers were selected from a pool of over 150 candidate loci that can be readily amplified in four multiplex PCR groups but other permutations are also possible. The basic properties of each markers were assessed in six population samples from both the Burrishoole catchment, in the west of Ireland, and Lough Neagh, in Northern Ireland. A method to assess the relative utility of individual markers for the detection of population genetic structuring is also described. Given its flexibility, technical reliability and high degree of informativeness, the use of this panel of markers is advocated as a standard for S. trutta genetic studies. © 2013 The Authors. Journal of Fish Biology © 2013 The Fisheries Society of the British Isles.