977 resultados para information extraction
Resumo:
Background: A major goal in the post-genomic era is to identify and characterise disease susceptibility genes and to apply this knowledge to disease prevention and treatment. Rodents and humans have remarkably similar genomes and share closely related biochemical, physiological and pathological pathways. In this work we utilised the latest information on the mouse transcriptome as revealed by the RIKEN FANTOM2 project to identify novel human disease-related candidate genes. We define a new term patholog to mean a homolog of a human disease-related gene encoding a product ( transcript, anti-sense or protein) potentially relevant to disease. Rather than just focus on Mendelian inheritance, we applied the analysis to all potential pathologs regardless of their inheritance pattern. Results: Bioinformatic analysis and human curation of 60,770 RIKEN full-length mouse cDNA clones produced 2,578 sequences that showed similarity ( 70 - 85% identity) to known human-disease genes. Using a newly developed biological information extraction and annotation tool ( FACTS) in parallel with human expert analysis of 17,051 MEDLINE scientific abstracts we identified 182 novel potential pathologs. Of these, 36 were identified by computational tools only, 49 by human expert analysis only and 97 by both methods. These pathologs were related to neoplastic ( 53%), hereditary ( 24%), immunological ( 5%), cardio-vascular (4%), or other (14%), disorders. Conclusions: Large scale genome projects continue to produce a vast amount of data with potential application to the study of human disease. For this potential to be realised we need intelligent strategies for data categorisation and the ability to link sequence data with relevant literature. This paper demonstrates the power of combining human expert annotation with FACTS, a newly developed bioinformatics tool, to identify novel pathologs from within large-scale mouse transcript datasets.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Biomédica
Resumo:
Even though the digital processing of documents is increasingly widespread in industry, printed documents are still largely in use. In order to process electronically the contents of printed documents, information must be extracted from digital images of documents. When dealing with complex documents, in which the contents of different regions and fields can be highly heterogeneous with respect to layout, printing quality and the utilization of fonts and typing standards, the reconstruction of the contents of documents from digital images can be a difficult problem. In the present article we present an efficient solution for this problem, in which the semantic contents of fields in a complex document are extracted from a digital image.
Resumo:
Background: Minimally invasive surgery creates two technological opportunities: (1) the development of better training and objective evaluation environments, and (2) the creation of image guided surgical systems.
Resumo:
La nanotecnología es un área de investigación de reciente creación que trata con la manipulación y el control de la materia con dimensiones comprendidas entre 1 y 100 nanómetros. A escala nanométrica, los materiales exhiben fenómenos físicos, químicos y biológicos singulares, muy distintos a los que manifiestan a escala convencional. En medicina, los compuestos miniaturizados a nanoescala y los materiales nanoestructurados ofrecen una mayor eficacia con respecto a las formulaciones químicas tradicionales, así como una mejora en la focalización del medicamento hacia la diana terapéutica, revelando así nuevas propiedades diagnósticas y terapéuticas. A su vez, la complejidad de la información a nivel nano es mucho mayor que en los niveles biológicos convencionales (desde el nivel de población hasta el nivel de célula) y, por tanto, cualquier flujo de trabajo en nanomedicina requiere, de forma inherente, estrategias de gestión de información avanzadas. Desafortunadamente, la informática biomédica todavía no ha proporcionado el marco de trabajo que permita lidiar con estos retos de la información a nivel nano, ni ha adaptado sus métodos y herramientas a este nuevo campo de investigación. En este contexto, la nueva área de la nanoinformática pretende detectar y establecer los vínculos existentes entre la medicina, la nanotecnología y la informática, fomentando así la aplicación de métodos computacionales para resolver las cuestiones y problemas que surgen con la información en la amplia intersección entre la biomedicina y la nanotecnología. Las observaciones expuestas previamente determinan el contexto de esta tesis doctoral, la cual se centra en analizar el dominio de la nanomedicina en profundidad, así como en el desarrollo de estrategias y herramientas para establecer correspondencias entre las distintas disciplinas, fuentes de datos, recursos computacionales y técnicas orientadas a la extracción de información y la minería de textos, con el objetivo final de hacer uso de los datos nanomédicos disponibles. El autor analiza, a través de casos reales, alguna de las tareas de investigación en nanomedicina que requieren o que pueden beneficiarse del uso de métodos y herramientas nanoinformáticas, ilustrando de esta forma los inconvenientes y limitaciones actuales de los enfoques de informática biomédica a la hora de tratar con datos pertenecientes al dominio nanomédico. Se discuten tres escenarios diferentes como ejemplos de actividades que los investigadores realizan mientras llevan a cabo su investigación, comparando los contextos biomédico y nanomédico: i) búsqueda en la Web de fuentes de datos y recursos computacionales que den soporte a su investigación; ii) búsqueda en la literatura científica de resultados experimentales y publicaciones relacionadas con su investigación; iii) búsqueda en registros de ensayos clínicos de resultados clínicos relacionados con su investigación. El desarrollo de estas actividades requiere el uso de herramientas y servicios informáticos, como exploradores Web, bases de datos de referencias bibliográficas indexando la literatura biomédica y registros online de ensayos clínicos, respectivamente. Para cada escenario, este documento proporciona un análisis detallado de los posibles obstáculos que pueden dificultar el desarrollo y el resultado de las diferentes tareas de investigación en cada uno de los dos campos citados (biomedicina y nanomedicina), poniendo especial énfasis en los retos existentes en la investigación nanomédica, campo en el que se han detectado las mayores dificultades. El autor ilustra cómo la aplicación de metodologías provenientes de la informática biomédica a estos escenarios resulta efectiva en el dominio biomédico, mientras que dichas metodologías presentan serias limitaciones cuando son aplicadas al contexto nanomédico. Para abordar dichas limitaciones, el autor propone un enfoque nanoinformático, original, diseñado específicamente para tratar con las características especiales que la información presenta a nivel nano. El enfoque consiste en un análisis en profundidad de la literatura científica y de los registros de ensayos clínicos disponibles para extraer información relevante sobre experimentos y resultados en nanomedicina —patrones textuales, vocabulario en común, descriptores de experimentos, parámetros de caracterización, etc.—, seguido del desarrollo de mecanismos para estructurar y analizar dicha información automáticamente. Este análisis concluye con la generación de un modelo de datos de referencia (gold standard) —un conjunto de datos de entrenamiento y de test anotados manualmente—, el cual ha sido aplicado a la clasificación de registros de ensayos clínicos, permitiendo distinguir automáticamente los estudios centrados en nanodrogas y nanodispositivos de aquellos enfocados a testear productos farmacéuticos tradicionales. El presente trabajo pretende proporcionar los métodos necesarios para organizar, depurar, filtrar y validar parte de los datos nanomédicos existentes en la actualidad a una escala adecuada para la toma de decisiones. Análisis similares para otras tareas de investigación en nanomedicina ayudarían a detectar qué recursos nanoinformáticos se requieren para cumplir los objetivos actuales en el área, así como a generar conjunto de datos de referencia, estructurados y densos en información, a partir de literatura y otros fuentes no estructuradas para poder aplicar nuevos algoritmos e inferir nueva información de valor para la investigación en nanomedicina. ABSTRACT Nanotechnology is a research area of recent development that deals with the manipulation and control of matter with dimensions ranging from 1 to 100 nanometers. At the nanoscale, materials exhibit singular physical, chemical and biological phenomena, very different from those manifested at the conventional scale. In medicine, nanosized compounds and nanostructured materials offer improved drug targeting and efficacy with respect to traditional formulations, and reveal novel diagnostic and therapeutic properties. Nevertheless, the complexity of information at the nano level is much higher than the complexity at the conventional biological levels (from populations to the cell). Thus, any nanomedical research workflow inherently demands advanced information management. Unfortunately, Biomedical Informatics (BMI) has not yet provided the necessary framework to deal with such information challenges, nor adapted its methods and tools to the new research field. In this context, the novel area of nanoinformatics aims to build new bridges between medicine, nanotechnology and informatics, allowing the application of computational methods to solve informational issues at the wide intersection between biomedicine and nanotechnology. The above observations determine the context of this doctoral dissertation, which is focused on analyzing the nanomedical domain in-depth, and developing nanoinformatics strategies and tools to map across disciplines, data sources, computational resources, and information extraction and text mining techniques, for leveraging available nanomedical data. The author analyzes, through real-life case studies, some research tasks in nanomedicine that would require or could benefit from the use of nanoinformatics methods and tools, illustrating present drawbacks and limitations of BMI approaches to deal with data belonging to the nanomedical domain. Three different scenarios, comparing both the biomedical and nanomedical contexts, are discussed as examples of activities that researchers would perform while conducting their research: i) searching over the Web for data sources and computational resources supporting their research; ii) searching the literature for experimental results and publications related to their research, and iii) searching clinical trial registries for clinical results related to their research. The development of these activities will depend on the use of informatics tools and services, such as web browsers, databases of citations and abstracts indexing the biomedical literature, and web-based clinical trial registries, respectively. For each scenario, this document provides a detailed analysis of the potential information barriers that could hamper the successful development of the different research tasks in both fields (biomedicine and nanomedicine), emphasizing the existing challenges for nanomedical research —where the major barriers have been found. The author illustrates how the application of BMI methodologies to these scenarios can be proven successful in the biomedical domain, whilst these methodologies present severe limitations when applied to the nanomedical context. To address such limitations, the author proposes an original nanoinformatics approach specifically designed to deal with the special characteristics of information at the nano level. This approach consists of an in-depth analysis of the scientific literature and available clinical trial registries to extract relevant information about experiments and results in nanomedicine —textual patterns, common vocabulary, experiment descriptors, characterization parameters, etc.—, followed by the development of mechanisms to automatically structure and analyze this information. This analysis resulted in the generation of a gold standard —a manually annotated training or reference set—, which was applied to the automatic classification of clinical trial summaries, distinguishing studies focused on nanodrugs and nanodevices from those aimed at testing traditional pharmaceuticals. The present work aims to provide the necessary methods for organizing, curating and validating existing nanomedical data on a scale suitable for decision-making. Similar analysis for different nanomedical research tasks would help to detect which nanoinformatics resources are required to meet current goals in the field, as well as to generate densely populated and machine-interpretable reference datasets from the literature and other unstructured sources for further testing novel algorithms and inferring new valuable information for nanomedicine.
Resumo:
Material completo EIT
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
Procedural knowledge is the knowledge required to perform certain tasks. It forms an important part of expertise, and is crucial for learning new tasks. This paper summarises existing work on procedural knowledge acquisition, and identifies two major challenges that remain to be solved in this field; namely, automating the acquisition process to tackle bottleneck in the formalization of procedural knowledge, and enabling machine understanding and manipulation of procedural knowledge. It is believed that recent advances in information extraction techniques can be applied compose a comprehensive solution to address these challenges. We identify specific tasks required to achieve the goal, and present detailed analyses of new research challenges and opportunities. It is expected that these analyses will interest researchers of various knowledge management tasks, particularly knowledge acquisition and capture.
Resumo:
Background and aims: Machine learning techniques for the text mining of cancer-related clinical documents have not been sufficiently explored. Here some techniques are presented for the pre-processing of free-text breast cancer pathology reports, with the aim of facilitating the extraction of information relevant to cancer staging.
Materials and methods: The first technique was implemented using the freely available software RapidMiner to classify the reports according to their general layout: ‘semi-structured’ and ‘unstructured’. The second technique was developed using the open source language engineering framework GATE and aimed at the prediction of chunks of the report text containing information pertaining to the cancer morphology, the tumour size, its hormone receptor status and the number of positive nodes. The classifiers were trained and tested respectively on sets of 635 and 163 manually classified or annotated reports, from the Northern Ireland Cancer Registry.
Results: The best result of 99.4% accuracy – which included only one semi-structured report predicted as unstructured – was produced by the layout classifier with the k nearest algorithm, using the binary term occurrence word vector type with stopword filter and pruning. For chunk recognition, the best results were found using the PAUM algorithm with the same parameters for all cases, except for the prediction of chunks containing cancer morphology. For semi-structured reports the performance ranged from 0.97 to 0.94 and from 0.92 to 0.83 in precision and recall, while for unstructured reports performance ranged from 0.91 to 0.64 and from 0.68 to 0.41 in precision and recall. Poor results were found when the classifier was trained on semi-structured reports but tested on unstructured.
Conclusions: These results show that it is possible and beneficial to predict the layout of reports and that the accuracy of prediction of which segments of a report may contain certain information is sensitive to the report layout and the type of information sought.
Resumo:
We describe a novel approach to explore DNA nucleotide sequence data, aiming to produce high-level categorical and structural information about the underlying chromosomes, genomes and species. The article starts by analyzing chromosomal data through histograms using fixed length DNA sequences. After creating the DNA-related histograms, a correlation between pairs of histograms is computed, producing a global correlation matrix. These data are then used as input to several data processing methods for information extraction and tabular/graphical output generation. A set of 18 species is processed and the extensive results reveal that the proposed method is able to generate significant and diversified outputs, in good accordance with current scientific knowledge in domains such as genomics and phylogenetics.
Resumo:
Proteins are biochemical entities consisting of one or more blocks typically folded in a 3D pattern. Each block (a polypeptide) is a single linear sequence of amino acids that are biochemically bonded together. The amino acid sequence in a protein is defined by the sequence of a gene or several genes encoded in the DNA-based genetic code. This genetic code typically uses twenty amino acids, but in certain organisms the genetic code can also include two other amino acids. After linking the amino acids during protein synthesis, each amino acid becomes a residue in a protein, which is then chemically modified, ultimately changing and defining the protein function. In this study, the authors analyze the amino acid sequence using alignment-free methods, aiming to identify structural patterns in sets of proteins and in the proteome, without any other previous assumptions. The paper starts by analyzing amino acid sequence data by means of histograms using fixed length amino acid words (tuples). After creating the initial relative frequency histograms, they are transformed and processed in order to generate quantitative results for information extraction and graphical visualization. Selected samples from two reference datasets are used, and results reveal that the proposed method is able to generate relevant outputs in accordance with current scientific knowledge in domains like protein sequence/proteome analysis.
Resumo:
RÉSUMÉ - Les images satellitales multispectrales, notamment celles à haute résolution spatiale (plus fine que 30 m au sol), représentent une source d’information inestimable pour la prise de décision dans divers domaines liés à la gestion des ressources naturelles, à la préservation de l’environnement ou à l’aménagement et la gestion des centres urbains. Les échelles d’étude peuvent aller du local (résolutions plus fines que 5 m) à des échelles régionales (résolutions plus grossières que 5 m). Ces images caractérisent la variation de la réflectance des objets dans le spectre qui est l’information clé pour un grand nombre d’applications de ces données. Or, les mesures des capteurs satellitaux sont aussi affectées par des facteurs « parasites » liés aux conditions d’éclairement et d’observation, à l’atmosphère, à la topographie et aux propriétés des capteurs. Deux questions nous ont préoccupé dans cette recherche. Quelle est la meilleure approche pour restituer les réflectances au sol à partir des valeurs numériques enregistrées par les capteurs tenant compte des ces facteurs parasites ? Cette restitution est-elle la condition sine qua non pour extraire une information fiable des images en fonction des problématiques propres aux différents domaines d’application des images (cartographie du territoire, monitoring de l’environnement, suivi des changements du paysage, inventaires des ressources, etc.) ? Les recherches effectuées les 30 dernières années ont abouti à une série de techniques de correction des données des effets des facteurs parasites dont certaines permettent de restituer les réflectances au sol. Plusieurs questions sont cependant encore en suspens et d’autres nécessitent des approfondissements afin, d’une part d’améliorer la précision des résultats et d’autre part, de rendre ces techniques plus versatiles en les adaptant à un plus large éventail de conditions d’acquisition des données. Nous pouvons en mentionner quelques unes : - Comment prendre en compte des caractéristiques atmosphériques (notamment des particules d’aérosol) adaptées à des conditions locales et régionales et ne pas se fier à des modèles par défaut qui indiquent des tendances spatiotemporelles à long terme mais s’ajustent mal à des observations instantanées et restreintes spatialement ? - Comment tenir compte des effets de « contamination » du signal provenant de l’objet visé par le capteur par les signaux provenant des objets environnant (effet d’adjacence) ? ce phénomène devient très important pour des images de résolution plus fine que 5 m; - Quels sont les effets des angles de visée des capteurs hors nadir qui sont de plus en plus présents puisqu’ils offrent une meilleure résolution temporelle et la possibilité d’obtenir des couples d’images stéréoscopiques ? - Comment augmenter l’efficacité des techniques de traitement et d’analyse automatique des images multispectrales à des terrains accidentés et montagneux tenant compte des effets multiples du relief topographique sur le signal capté à distance ? D’autre part, malgré les nombreuses démonstrations par des chercheurs que l’information extraite des images satellitales peut être altérée à cause des tous ces facteurs parasites, force est de constater aujourd’hui que les corrections radiométriques demeurent peu utilisées sur une base routinière tel qu’est le cas pour les corrections géométriques. Pour ces dernières, les logiciels commerciaux de télédétection possèdent des algorithmes versatiles, puissants et à la portée des utilisateurs. Les algorithmes des corrections radiométriques, lorsqu’ils sont proposés, demeurent des boîtes noires peu flexibles nécessitant la plupart de temps des utilisateurs experts en la matière. Les objectifs que nous nous sommes fixés dans cette recherche sont les suivants : 1) Développer un logiciel de restitution des réflectances au sol tenant compte des questions posées ci-haut. Ce logiciel devait être suffisamment modulaire pour pouvoir le bonifier, l’améliorer et l’adapter à diverses problématiques d’application d’images satellitales; et 2) Appliquer ce logiciel dans différents contextes (urbain, agricole, forestier) et analyser les résultats obtenus afin d’évaluer le gain en précision de l’information extraite par des images satellitales transformées en images des réflectances au sol et par conséquent la nécessité d’opérer ainsi peu importe la problématique de l’application. Ainsi, à travers cette recherche, nous avons réalisé un outil de restitution de la réflectance au sol (la nouvelle version du logiciel REFLECT). Ce logiciel est basé sur la formulation (et les routines) du code 6S (Seconde Simulation du Signal Satellitaire dans le Spectre Solaire) et sur la méthode des cibles obscures pour l’estimation de l’épaisseur optique des aérosols (aerosol optical depth, AOD), qui est le facteur le plus difficile à corriger. Des améliorations substantielles ont été apportées aux modèles existants. Ces améliorations concernent essentiellement les propriétés des aérosols (intégration d’un modèle plus récent, amélioration de la recherche des cibles obscures pour l’estimation de l’AOD), la prise en compte de l’effet d’adjacence à l’aide d’un modèle de réflexion spéculaire, la prise en compte de la majorité des capteurs multispectraux à haute résolution (Landsat TM et ETM+, tous les HR de SPOT 1 à 5, EO-1 ALI et ASTER) et à très haute résolution (QuickBird et Ikonos) utilisés actuellement et la correction des effets topographiques l’aide d’un modèle qui sépare les composantes directe et diffuse du rayonnement solaire et qui s’adapte également à la canopée forestière. Les travaux de validation ont montré que la restitution de la réflectance au sol par REFLECT se fait avec une précision de l’ordre de ±0.01 unités de réflectance (pour les bandes spectrales du visible, PIR et MIR), même dans le cas d’une surface à topographie variable. Ce logiciel a permis de montrer, à travers des simulations de réflectances apparentes à quel point les facteurs parasites influant les valeurs numériques des images pouvaient modifier le signal utile qui est la réflectance au sol (erreurs de 10 à plus de 50%). REFLECT a également été utilisé pour voir l’importance de l’utilisation des réflectances au sol plutôt que les valeurs numériques brutes pour diverses applications courantes de la télédétection dans les domaines des classifications, du suivi des changements, de l’agriculture et de la foresterie. Dans la majorité des applications (suivi des changements par images multi-dates, utilisation d’indices de végétation, estimation de paramètres biophysiques, …), la correction des images est une opération cruciale pour obtenir des résultats fiables. D’un point de vue informatique, le logiciel REFLECT se présente comme une série de menus simples d’utilisation correspondant aux différentes étapes de saisie des intrants de la scène, calcul des transmittances gazeuses, estimation de l’AOD par la méthode des cibles obscures et enfin, l’application des corrections radiométriques à l’image, notamment par l’option rapide qui permet de traiter une image de 5000 par 5000 pixels en 15 minutes environ. Cette recherche ouvre une série de pistes pour d’autres améliorations des modèles et méthodes liés au domaine des corrections radiométriques, notamment en ce qui concerne l’intégration de la FDRB (fonction de distribution de la réflectance bidirectionnelle) dans la formulation, la prise en compte des nuages translucides à l’aide de la modélisation de la diffusion non sélective et l’automatisation de la méthode des pentes équivalentes proposée pour les corrections topographiques.
Resumo:
S’insérant dans les domaines de la Lecture et de l’Analyse de Textes Assistées par Ordinateur (LATAO), de la Gestion Électronique des Documents (GÉD), de la visualisation de l’information et, en partie, de l’anthropologie, cette recherche exploratoire propose l’expérimentation d’une méthodologie descriptive en fouille de textes afin de cartographier thématiquement un corpus de textes anthropologiques. Plus précisément, nous souhaitons éprouver la méthode de classification hiérarchique ascendante (CHA) pour extraire et analyser les thèmes issus de résumés de mémoires et de thèses octroyés de 1985 à 2009 (1240 résumés), par les départements d’anthropologie de l’Université de Montréal et de l’Université Laval, ainsi que le département d’histoire de l’Université Laval (pour les résumés archéologiques et ethnologiques). En première partie de mémoire, nous présentons notre cadre théorique, c'est-à-dire que nous expliquons ce qu’est la fouille de textes, ses origines, ses applications, les étapes méthodologiques puis, nous complétons avec une revue des principales publications. La deuxième partie est consacrée au cadre méthodologique et ainsi, nous abordons les différentes étapes par lesquelles ce projet fut conduit; la collecte des données, le filtrage linguistique, la classification automatique, pour en nommer que quelques-unes. Finalement, en dernière partie, nous présentons les résultats de notre recherche, en nous attardant plus particulièrement sur deux expérimentations. Nous abordons également la navigation thématique et les approches conceptuelles en thématisation, par exemple, en anthropologie, la dichotomie culture ̸ biologie. Nous terminons avec les limites de ce projet et les pistes d’intérêts pour de futures recherches.