976 resultados para influenza-like illness
Resumo:
Objective: Several surveillance definitions of influenza-like illness (ILI) have been proposed, based on the presence of symptoms. Symptom data can be obtained from patients, medical records, or both. Past research has found that agreements between health record data and self-report are variable depending on the specific symptom. Therefore, we aimed to explore the implications of using data on influenza symptoms extracted from medical records, similar data collected prospectively from outpatients, and the combined data from both sources as predictors of laboratory-confirmed influenza. Methods: Using data from the Hutterite Influenza Prevention Study, we calculated: 1) the sensitivity, specificity and predictive values of individual symptoms within surveillance definitions; 2) how frequently surveillance definitions correlated to laboratory-confirmed influenza; and 3) the predictive value of surveillance definitions. Results: Of the 176 participants with reports from participants and medical records, 142 (81%) were tested for influenza and 37 (26%) were PCR positive for influenza. Fever (alone) and fever combined with cough and/or sore throat were highly correlated with being PCR positive for influenza for all data sources. ILI surveillance definitions, based on symptom data from medical records only or from both medical records and self-report, were better predictors of laboratory-confirmed influenza with higher odds ratios and positive predictive values. Discussion: The choice of data source to determine ILI will depend on the patient population, outcome of interest, availability of data source, and use for clinical decision making, research, or surveillance. © Canadian Public Health Association, 2012.
Resumo:
La surveillance de l’influenza s’appuie sur un large spectre de données, dont les données de surveillance syndromique provenant des salles d’urgences. De plus en plus de variables sont enregistrées dans les dossiers électroniques des urgences et mises à la disposition des équipes de surveillance. L’objectif principal de ce mémoire est d’évaluer l’utilité potentielle de l’âge, de la catégorie de triage et de l’orientation au départ de l’urgence pour améliorer la surveillance de la morbidité liée aux cas sévères d’influenza. Les données d’un sous-ensemble des hôpitaux de Montréal ont été utilisées, d’avril 2006 à janvier 2011. Les hospitalisations avec diagnostic de pneumonie ou influenza ont été utilisées comme mesure de la morbidité liée aux cas sévères d’influenza, et ont été modélisées par régression binomiale négative, en tenant compte des tendances séculaires et saisonnières. En comparaison avec les visites avec syndrome d’allure grippale (SAG) totales, les visites avec SAG stratifiées par âge, par catégorie de triage et par orientation de départ ont amélioré le modèle prédictif des hospitalisations avec pneumonie ou influenza. Avant d’intégrer ces variables dans le système de surveillance de Montréal, des étapes additionnelles sont suggérées, incluant l’optimisation de la définition du syndrome d’allure grippale à utiliser, la confirmation de la valeur de ces prédicteurs avec de nouvelles données et l’évaluation de leur utilité pratique.
Resumo:
The present study suggests that human metapneumovirus (hMPV) is an important cause of community acquired respiratory infections in children. We report the detection of hMPV in a pediatric population with influenza-like illness in the subtropical area of Yucatan in Mexico. Our data also shows that hMPV circulates in the community with other respiratory pathogens.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Background Acute respiratory infections (ARI) are frequent in children and complications can occur in patients with chronic diseases. We evaluated the frequency and impact of ARI and influenza-like illness (ILI) episodes on disease activity, and the immunogenicity and safety of influenza vaccine in a cohort of juvenile idiopathic arthritis (JIA) patients. Methods Surveillance of respiratory viruses was conducted in JIA patients during ARI season (March to August) in two consecutive years: 2007 (61 patients) and 2008 (63 patients). Patients with ARI or ILI had respiratory samples collected for virus detection by real time PCR. In 2008, 44 patients were immunized with influenza vaccine. JIA activity index (ACRPed30) was assessed during both surveillance periods. Influenza hemagglutination inhibition antibody titers were measured before and 30-40 days after vaccination. Results During the study period 105 ARI episodes were reported and 26.6% of them were ILI. Of 33 samples collected, 60% were positive for at least one virus. Influenza and rhinovirus were the most frequently detected, in 30% of the samples. Of the 50 JIA flares observed, 20% were temporally associated to ARI. Influenza seroprotection rates were higher than 70% (91-100%) for all strains, and seroconversion rates exceeded 40% (74-93%). In general, response to influenza vaccine was not influenced by therapy or disease activity, but patients using anti-TNF alpha drugs presented lower seroconversion to H1N1 strain. No significant differences were found in ACRPed30 after vaccination and no patient reported ILI for 6 months after vaccination. Conclusion ARI episodes are relatively frequent in JIA patients and may have a role triggering JIA flares. Trivalent split influenza vaccine seems to be immunogenic and safe in JIA patients.
Resumo:
Recent studies suggest an association between the Interferon Inducible Transmembrane 3 (IFITM3) rs12252 variant and the course of influenza infection. However, it is not clear whether the reported association relates to influenza infection severity. The aim of this study was to estimate the hospitalization risk associated with this variant in Influenza Like Illness (ILI) patients during the H1N1 pandemic influenza. A case-control genetic association study was performed, using nasopharyngeal/oropharyngeal swabs collected during the H1N1 pandemic influenza. Laboratory diagnosis of influenza infection was performed by RT-PCR, the IFITM3 rs12252 was genotyped by RFLP and tested for association with hospitalization. Conditional logistic regression was performed to calculate the confounder-adjusted odds ratio of hospitalization associated with IFITM3 rs12252. We selected 312 ILI cases and 624 matched non-hospitalized controls. Within ILI Influenza A(H1N1)pdm09 positive patients, no statistical significant association was found between the variant and the hospitalization risk (Adjusted OR: 0.73 (95%CI: 0.33–1.50)). Regarding ILI Influenza A(H1N1)pdm09 negative patients, CT/CC genotype carriers had a higher risk of being hospitalized than patients with TT genotype (Adjusted OR: 2.54 (95%CI: 1.54–4.19)). The IFITM3 rs12252 variant was associated with respiratory infection hospitalization but not specifically in patients infected with Influenza A(H1N1)pdm09.
Resumo:
Executive summary Objective: The aims of this study were to identify the impact of Pandemic (H1N1) 2009 Influenza on Australian Emergency Departments (EDs) and their staff, and to inform planning, preparedness, and response management arrangements for future pandemics, as well as managing infectious patients presenting to EDs in everyday practice. Methods This study involved three elements: 1. The first element of the study was an examination of published material including published statistics. Standard literature research methods were used to identify relevant published articles. In addition, data about ED demand was obtained from Australian Government Department of Health and Ageing (DoHA) publications, with several state health departments providing more detailed data. 2. The second element of the study was a survey of Directors of Emergency Medicine identified with the assistance of the Australasian College for Emergency Medicine (ACEM). This survey retrieved data about demand for ED services and elicited qualitative comments on the impact of the pandemic on ED management. 3. The third element of the study was a survey of ED staff. A questionnaire was emailed to members of three professional colleges—the ACEM; the Australian College of Emergency Nursing (ACEN); and the College of Emergency Nursing Australasia (CENA). The overall response rate for the survey was 18.4%, with 618 usable responses from 3355 distributed questionnaires. Topics covered by the survey included ED conditions during the (H1N1) 2009 influenza pandemic; information received about Pandemic (H1N1) 2009 Influenza; pandemic plans; the impact of the pandemic on ED staff with respect to stress; illness prevention measures; support received from others in work role; staff and others’ illness during the pandemic; other factors causing ED staff to miss work during the pandemic; and vaccination against Pandemic (H1N1) 2009 Influenza. Both qualitative and quantitative data were collected and analysed. Results: The results obtained from Directors of Emergency Medicine quantifying the impact of the pandemic were too limited for interpretation. Data sourced from health departments and published sources demonstrated an increase in influenza-like illness (ILI) presentations of between one and a half and three times the normal level of presentations of ILIs. Directors of Emergency Medicine reported a reasonable level of preparation for the pandemic, with most reporting the use of pandemic plans that translated into relatively effective operational infection control responses. Directors reported a highly significant impact on EDs and their staff from the pandemic. Growth in demand and related ED congestion were highly significant factors causing distress within the departments. Most (64%) respondents established a ‘flu clinic’ either as part of Pandemic (H1N1) 2009 Influenza Outbreak in Australia: Impact on Emergency Departments. the ED operations or external to it. They did not note a significantly higher rate of sick leave than usual. Responses relating to the impact on staff were proportional to the size of the colleges. Most respondents felt strongly that Pandemic (H1N1) 2009 Influenza had a significant impact on demand in their ED, with most patients having low levels of clinical urgency. Most respondents felt that the pandemic had a negative impact on the care of other patients, and 94% revealed some increase in stress due to lack of space for patients, increased demand, and filling staff deficits. Levels of concern about themselves or their family members contracting the illness were less significant than expected. Nurses displayed significantly higher levels of stress overall, particularly in relation to skill-mix requirements, lack of supplies and equipment, and patient and patients’ family aggression. More than one-third of respondents became ill with an ILI. Whilst respondents themselves reported taking low levels of sick leave, respondents cited difficulties with replacing absent staff. Ranked from highest to lowest, respondents gained useful support from ED colleagues, ED administration, their hospital occupational health department, hospital administration, professional colleges, state health department, and their unions. Respondents were generally positive about the information they received overall; however, the volume of information was considered excessive and sometimes inconsistent. The media was criticised as scaremongering and sensationalist and as being the cause of many unnecessary presentations to EDs. Of concern to the investigators was that a large proportion (43%) of respondents did not know whether a pandemic plan existed for their department or hospital. A small number of staff reported being redeployed from their usual workplace for personal risk factors or operational reasons. As at the time of survey (29 October –18 December 2009), 26% of ED staff reported being vaccinated against Pandemic (H1N1) 2009 Influenza. Of those not vaccinated, half indicated they would ‘definitely’ or ‘probably’ not get vaccinated, with the main reasons being the vaccine was ‘rushed into production’, ‘not properly tested’, ‘came out too late’, or not needed due to prior infection or exposure, or due to the mildness of the disease. Conclusion: Pandemic (H1N1) 2009 Influenza had a significant impact on Australian Emergency Departments. The pandemic exposed problems in existing plans, particularly a lack of guidelines, general information overload, and confusion due to the lack of a single authoritative information source. Of concern was the high proportion of respondents who did not know if their hospital or department had a pandemic plan. Nationally, the pandemic communication strategy needs a detailed review, with more engagement with media networks to encourage responsible and consistent reporting. Also of concern was the low level of immunisation, and the low level of intention to accept vaccination. This is a problem seen in many previous studies relating to seasonal influenza and health care workers. The design of EDs needs to be addressed to better manage infectious patients. Significant workforce issues were confronted in this pandemic, including maintaining appropriate staffing levels; staff exposure to illness; access to, and appropriate use of, personal protective equipment (PPE); and the difficulties associated with working in PPE for prolonged periods. An administrative issue of note was the reporting requirement, which created considerable additional stress for staff within EDs. Peer and local support strategies helped ensure staff felt their needs were provided for, creating resilience, dependability, and stability in the ED workforce. Policies regarding the establishment of flu clinics need to be reviewed. The ability to create surge capacity within EDs by considering staffing, equipment, physical space, and stores is of primary importance for future pandemics.
Resumo:
Objective: To describe the reported impact of Pandemic (H1N1) 2009 on EDs, so as to inform future pandemic policy, planning and response management. Methods: This study comprised an issue and theme analysis of publicly accessible literature, data from jurisdictional health departments, and data obtained from two electronic surveys of ED directors and ED staff. The issues identified formed the basis of policy analysis and evaluation. Results: Pandemic (H1N1) 2009 had a significant impact on EDs with presentation for patients with ‘influenza-like illness’ up to three times that of the same time in previous years. Staff reported a range of issues, including poor awareness of pandemic plans, patient and family aggression, chaotic information flow to themselves and the public, heightened stress related to increased workloads and lower levels of staffing due to illness, family care duties and redeployment of staff to flu clinics. Staff identified considerable discomfort associated with prolonged times wearing personal protective equipment. Staff believed that the care of non-flu patients was compromised during the pandemic as a result of overwork, distraction from core business and the difficulties associated with accommodating infectious patients in an environment that was not conducive. Conclusions: This paper describes the breadth of the impact of pandemics on ED operations. It identifies a need to address a range of industrial, management and procedural issues. In particular, there is a need for a single authoritative source of information, the re-engineering of EDs to accommodate infectious patients and organizational changes to enable rapid deployment of alternative sources of care.
Resumo:
Objective: To examine the epidemiology and burden of respiratory illness during winter in urban children from temperate Australia. Methods: We conducted a cohort study of healthy Melbourne children, aged from 12 to 71 months. Parents kept a daily respiratory symptom diary and recorded resource use when an influenza-like illness (ILI) occurred. Results: One-hundred and eighteen children had 137 ILI episodes over 12 weeks for a rate of 0.53 ILI episodes per child-month (95% CI 0.44-0.61). Risk factors for ILI included younger age, fewer people residing in the household, structured exposure to other children outside the home, and a higher household income. Episodes had a mean duration of 10.4 days with 64 visits to a general practitioner (46.7 GP visits per 100 episodes), 27 antibiotic courses prescribed (19.7 antibiotic courses per 100 episodes), and three overnight hospitalizations (2.2 admissions per 100 episodes). Parents reported an average of 11.7 h excess time spent caring for a child per episode. Conclusions: Respiratory illnesses are a common and largely neglected cause of illness in Australian children. Pathogen-specific data are required to better assess the likely impact of available and developing vaccines and other treatment options.
Resumo:
Background: Acute febrile respiratory illnesses, including influenza, account for a large proportion of ambulatory care visits worldwide. In the developed world, these encounters commonly result in unwarranted antibiotic prescriptions; data from more resource-limited settings are lacking. The purpose of this study was to describe the epidemiology of influenza among outpatients in southern Sri Lanka and to determine if access to rapid influenza test results was associated with decreased antibiotic prescriptions.
Methods: In this pretest- posttest study, consecutive patients presenting from March 2013- April 2014 to the Outpatient Department of the largest tertiary care hospital in southern Sri Lanka were surveyed for influenza-like illness (ILI). Patients meeting World Health Organization criteria for ILI-- acute onset of fever ≥38.0°C and cough in the prior 7 days--were enrolled. Consenting patients were administered a structured questionnaire, physical examination, and nasal/nasopharyngeal sampling. Rapid influenza A/B testing (Veritor System, Becton Dickinson) was performed on all patients, but test results were only released to patients and clinicians during the second phase of the study (December 2013- April 2014).
Results: We enrolled 397 patients with ILI, with 217 (54.7%) adults ≥12 years and 188 (47.4%) females. A total of 179 (45.8%) tested positive for influenza by rapid testing, with April- July 2013 and September- November 2013 being the periods with the highest proportion of ILI due to influenza. A total of 310 (78.1%) patients with ILI received a prescription for an antibiotic from their outpatient provider. The proportion of patients prescribed antibiotics decreased from 81.4% in the first phase to 66.3% in the second phase (p=.005); among rapid influenza-positive patients, antibiotic prescriptions decreased from 83.7% in the first phase to 56.3% in the second phase (p=.001). On multivariable analysis, having a positive rapid influenza test available to clinicians was associated with decreased antibiotic use (OR 0.20, 95% CI 0.05- 0.82).
Conclusions: Influenza virus accounted for almost 50% of acute febrile respiratory illness in this study, but most patients were prescribed antibiotics. Providing rapid influenza test results to clinicians was associated with fewer antibiotic prescriptions, but overall prescription of antibiotics remained high. In this developing country setting, a multi-faceted approach that includes improved access to rapid diagnostic tests may help decrease antibiotic use and combat antimicrobial resistance.
Resumo:
False-positive PCR results usually occur as a consequence of specimen-to-specimen or amplicon-to-specimen contamination within the laboratory. Evidence of contamination at time of specimen collection linked to influenza vaccine administration in the same location as influenza sampling is described. Clinical, circumstantial and laboratory evidence was gathered for each of five cases of influenza-like illness (ILI) with unusual patterns of PCR reactivity for seasonal H1N1, H3N2, H1N1 (2009) and influenza B viruses. Two 2010 trivalent influenza vaccines and environmental swabs of a hospital influenza vaccination room were also tested for influenza RNA. Sequencing of influenza A matrix (M) gene amplicons from the five cases and vaccines was undertaken. Four 2009 general practitioner (GP) specimens were seasonal H1N1, H3N2 and influenza B PCR positive. One 2010 GP specimen was H1N1 (2009), H3N2 and influenza B positive. PCR of 2010 trivalent vaccines showed high loads of detectable influenza A and B RNA. Sequencing of the five specimens and vaccines showed greatest homology with the M gene sequence of Influenza A/Puerto Rico/8/1934 H1N1 virus (used in generation of influenza vaccine strains). Environmental swabs had detectable influenza A and B RNA. RNA detection studies demonstrated vaccine RNA still detectable for at least 66 days. Administration of influenza vaccines and clinical sampling in the same room resulted in the contamination with vaccine strains of surveillance swabs collected from patients with ILI. Vaccine contamination should therefore be considered, particularly where multiple influenza virus RNA PCR positive signals (e.g. H1N1, H3N2 and influenza B) are detected in the same specimen.
Resumo:
OBJECTIVES: To determine the cost-effectiveness of influenza vaccination in people aged 65-74 years in the absence of co-morbidity. DESIGN: Primary research: randomised controlled trial. SETTING: Primary care. PARTICIPANTS: People without risk factors for influenza or contraindications to vaccination were identified from 20 general practitioner (GP) practices in Liverpool in September 1999 and invited to participate in the study. There were 5875/9727 (60.4%) people aged 65-74 years identified as potentially eligible and, of these, 729 (12%) were randomised. INTERVENTION: Participants were randomised to receive either influenza vaccine or placebo (ratio 3:1), with all individuals receiving pneumococcal vaccine unless administered in the previous 10 years. Of the 729 people randomised, 552 received vaccine and 177 received placebo; 726 individuals were administered pneumococcal vaccine. MAIN OUTCOME MEASURES AND METHODOLOGY OF ECONOMIC EVALUATION: GP attendance with influenza-like illness (ILI) or pneumonia (primary outcome measure); or any respiratory symptoms; hospitalisation with a respiratory illness; death; participant self-reported ILI; quality of life (QoL) measures at 2, 4 and 6 months post-study vaccination; adverse reactions 3 days after vaccination. A cost-effectiveness analysis was undertaken to identify the incremental cost associated with the avoidance of episodes of influenza in the vaccination population and an impact model was used to extrapolate the cost-effectiveness results obtained from the trial to assess their generalisability throughout the NHS. RESULTS: In England and Wales, weekly consultations for influenza and ILI remained at baseline levels (less than 50 per 100,000 population) until week 50/1999 and then increased rapidly, peaking during week 2/2000 with a rate of 231/100,000. This rate fell within the range of 'higher than expected seasonal activity' of 200-400/100,000. Rates then quickly declined, returning to baseline levels by week 5/2000. The predominant circulating strain during this period was influenza A (H3N2). Five (0.9%) people in the vaccine group were diagnosed by their GP with an ILI compared to two (1.1%) in the placebo group [relative risk (RR), 0.8; 95% confidence interval (CI) = 0.16 to 4.1]. No participants were diagnosed with pneumonia by their GP and there were no hospitalisations for respiratory illness in either group. Significantly fewer vaccinated individuals self-reported a single ILI (4.6% vs 8.9%, RR, 0.51; 95% CI for RR, 0.28 to 0.96). There was no significant difference in any of the QoL measurements over time between the two groups. Reported systemic side-effects showed no significant differences between groups. Local side-effects occurred with a significantly increased incidence in the vaccine group (11.3% vs 5.1%, p = 0.02). Each GP consultation avoided by vaccination was estimated from trial data to generate a net NHS cost of 174 pounds. CONCLUSIONS: No difference was seen between groups for the primary outcome measure, although the trial was underpowered to demonstrate a true difference. Vaccination had no significant effect on any of the QoL measures used, although vaccinated individuals were less likely to self-report ILI. The analysis did not suggest that influenza vaccination in healthy people aged 65-74 years would lead to lower NHS costs. Future research should look at ways to maximise vaccine uptake in people at greatest risk from influenza and also the level of vaccine protection afforded to people from different age and socio-economic populations.
Resumo:
The aim of this study was to determine the cost effectiveness of influenza vaccination for healthy people aged 65-74 years living in the UK. People without risk factors for influenza (chronic heart, lung or renal disease, diabetic, immuno-suppressed or those living in an institution) were identified from 20 general practitioner (GP) practices in Liverpool in September 1999. 729/5875 (12.4%) eligible individuals were recruited and randomised to receive either influenza vaccine or placebo (ratio 3: 1)! with all participants receiving 23-valent-pneumococcal polysaccharide vaccine unless already administered. The primary analysis was the frequency of influenza as recorded by a GP diagnosis of pneumonia or influenza like illness. In 2000, the UK vaccination policy was changed with influenza vaccine becoming available. for all people aged 65 years and over irrespective of risk. As a consequence of this policy change. the study had to be fundamentally restructured and only results obtained over a one rather than the originally planned two-year randomised controlled trial framework were used. Results from 1999/2000 demonstrated no significant difference between groups for the primary outcome (relative risk 0.8, 95%, CI 0.16-4.1). In addition. there were no deaths or hospitalisations for influenza associated respiratory illness in either group. The subsequent analysis. using both national and local sources of evidence, estimated the following cost effectiveness indicators: (1) incremental NHS cost per GP consultation avoided = pound2000; (2) incremental NHS cost per hospital admission avoided = pound61,000: (3) incremental NHS cost per death avoided = pound1.900.000 and (4) incremental NHS cost per QALY gained = pound304,000. The analysis suggested that influenza vaccination in this Population would not be cost effective. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
The transmission of influenza in health care settings is a major threat to patients, especially those with severe diseases. The attitude of health care workers (HCWs) may influence the transmission of countless infections. The current study aimed to quantify knowledge and identify attitudes of HCWs involved in intensive care units (ICUs) regarding the risk of nosocomial influenza transmission. A questionnaire was applied through interviews to HCWs who worked in one of the five ICUs from a teaching hospital. Questions about influenza were deliberately dispersed among others that assessed several infectious agents. Forty-two HCWs were interviewed: nine physicians, ten nurses and 23 nursing technicians or auxiliaries. Among the 42 HCWs, 98% were aware of the potential transmission of influenza virus in the ICUs, but only 31% would indicate droplet precautions for patients with suspected infection. Moreover, only 31% of them had been vaccinated against influenza in the last campaign (2008). Nursing technicians or auxiliaries were more likely to have been vaccinated, both by univariate and multivariable analysis. When asked about absenteeism, only 10% of the study subjects stated that they would not go to work if they had an influenza-like illness. Those findings suggest that, in non-pandemic periods, influenza control in hospitals requires strategies that combine continuous education with changes in organizational culture.