3 resultados para inertization
Resumo:
The viability of small-scale heavy-metal waste immobilization into iron phosphate glasses was investigated. Several waste forms containing different amounts of heavy-ion wastes were evaluated (5%, 10%, 15%, 20%, 26%, 33%, 40% and 50% by mass) and their X-ray diffraction patterns revealed that no crystallization occurred in glasses with waste concentrations up to 26%. The dissolution rates for all of the reported glass compositions (ca. 10-8 g cm-2 min-1) are similar to those reported for the materials most commonly used for waste vitrification. Iron phosphate glasses thus proved to be very useful for the immobilization of heavy-metal wastes, exhibiting good contention and chemical durability comparable to that of borosilicate glasses.
Resumo:
The sheave leather was subjected to chemical treatment in an attempt to immobilize chromium ion in a matrix of cement. Cementitious pastes were obtained by adding different proportions of waste treated solutions (5 and 10% compared to the cement mass) and the pH and setting time (hardening) were measured. Aiming to check the leather influence in Portland cement pastes, the phases formation were observed by X-ray diffraction (XRD). The results showed that the pretreatment was effective for the waste dissolution and the pH of treated waste chemical solutions did not influence significantly the characteristics of cement paste, with a slight increase in setting time results.
Resumo:
This work assesses the environmental impact of a municipal solid waste incinerator with energy recovery in Forlì-Cesena province (Emilia-Romagna region, Italy). The methodology used is Life Cycle Assessment (LCA). As the plant already applies the best technologies available in waste treatment, this study focuses on the fate of the residues (bottom and fly ash) produced during combustion. Nine scenarios are made, based on different ash treatment disposing/recycling techniques. The functional unit is the amount of waste incinerated in 2011. Boundaries are set from waste arrival in the plant to the disposal/recovery of the residues produced, with energy recovery. Only the operative period is considered. Software used is GaBi 4 and the LCIA method used is CML2001. The impact categories analyzed are: abiotic depletion, acidification, eutrophication, freshwater aquatic ecotoxicity, global warming, human toxicity, ozone layer depletion, photochemical oxidant formation, terrestrial ecotoxicity and primary energy demand. Most of the data are taken from Herambiente. When primary data are not available, data from Ecoinvent and GaBi databases or literature data are used. The whole incineration process is sustainable, due to the relevant avoided impact given by co-generator. As far as regards bottom ash treatment, the most influential process is the impact savings from iron recovery. Bottom ash recycling in road construction or as building material are both valid alternatives, even if the first option faces legislative limits in Italy. Regarding fly ash inertization, the adding of cement and Ferrox treatment results the most feasible alternatives. However, this inertized fly ash can maintain its hazardous nature. The only method to ensure the stability of an inertized fly ash is to couple two different stabilization treatments. Ash stabilization technologies shall improve with the same rate of the flexibility of the national legislation about incineration residues recycling.