927 resultados para industrial waste
Resumo:
An industrial waste liquor having high sulfate concentrations was subjected to biological treatment using the sulfate-reducing bacteria (SRB) Desulfovibrio desulfuricans. Toxicity levels of different sulfate, cobalt and nickel concentrations toward growth of the SRB with respect to biological sulfate reduction kinetics was initially established. Optimum sulfate concentration to promote SRB growth amounted to 0.8 - 1 g/L. The strain of D. desulfuricans used in this study initially tolerated up to 4 -5 g/L of sulfate or 50 mg/L of cobalt and nickel, while its tolerance could be further enhanced through adaptation by serial subculturing in the presence of increasing concentrations of sulfate, cobalt and nickel. From the waste liquor, more than 70% of sulfate and 95% of cobalt and nickel could be precipitated as sulfides, using a preadapted strain of D. desulfuricans. Probable mechanisms involving biological sulfide precipitation and metal adsorption onto precipitates and bacterial cells are discussed.
Resumo:
Biodiesel run engines are gaining popularity since the last few years as a viable alternative to conventional petro-diesel based engines. In biodiesel exhaust the content of volatile organic compounds, oil mist, and mass of particulate matter is considerably lower. However, the concentration of oxides of nitrogen (NOx) is relatively higher. In this paper the biodiesel exhaust from a stationary engine is treated under controlled laboratory conditions for removal of NOx using dielectric barrier discharge plasma in cascade with adsorbents prepared from abundantly available industrial waste byproducts like red mud and copper slag. Results were compared with gamma-alumina, a commercial adsorbent. Two different dielectric barrier discharge (DBD) reactors were tested for their effectiveness under Repetitive pulses /AC energization. NOx removal as high as 80% was achieved with pulse energized reactors when cascaded with red mud as adsorbent.
Resumo:
The concomitant recycling of waste and carbon dioxide emissions is the subject of developing technology designed to close the industrial process loop and facilitate the bulk-re-use of waste in, for example, construction. The present work discusses a treatment step that employs accelerated carbonation to convert gaseous carbon dioxide into solid calcium carbonate through a reaction with industrial thermal residues. Treatment by accelerated carbonation enabled a synthetic aggregate to be made from thermal residues and waste quarry fines. The aggregates produced had a bulk density below 1000 kg/m3 and a high water absorption capacity. Aggregate crushing strengths were between 30% and 90% stronger than the proprietary lightweight expanded clay aggregate available in the UK. Cast concrete blocks containing the carbonated aggregate achieve compressive strengths of 24 MPa, making them suitable for use with concrete exposed to non-aggressive service environments. The energy intensive firing and sintering processes traditionally required to produce lightweight aggregates can now be augmented by a cold-bonding, low energy method that contributes to the reduction of green house gases to the atmosphere.
Resumo:
The water treatment capability of a novel photocatalytic slurry reactor was investigated using methylene blue (MB) as a model pollutant in an aqueous suspension. A pellet TiO 2 catalyst was employed and this freed the system from the need of filtration of catalyst following photocatalysis. This configuration combines the high surface area contact of catalyst with pollutant of the slurry reactor and also offers a high illumination of catalyst by its unique array of weir-like baffles. In this work, the batch adsorption of MB from aqueous solution (10μM) onto the TiO 2 catalyst was studied, adsorption isotherms and kinetics were determined from the experimental data. Complete degradation of MB was achieved within 60 min illumination with various loadings of catalyst (30-200 g L -1). A modest catalyst loading (30 g L -1) achieved 98% degradation within 60 min of irradiation. Experimental results indicate that this novel reactor configuration has a high effective mass transfer rate and UV light penetration characteristics.
Resumo:
Lead poisoning is described in a herd of 120 Nelore cows of which 35 were affected. All affected cows died after a clinical course of 2-7 d with clinical signs related to cortical neurological disturbances. The source of Pb was fumes from a car battery recycling plant which has had a failure in its filtering system. Lead concentrations in liver and kidneys of 2 cows, in soil;and in grass where the cows were held were respective 39 to 431 ppm, 147 to 431 ppm,and 245ppm. No significant gross changes were observed. Histopathology revealed of neuronal necrosis, vacuolation of the neuropil and hypertrophy of the vascular endothelium inthecerebral cortices, degeneration of the epithelial cellsofrenal proximal tubules, and hemosiderosis of kidney, spleen and liver.
Resumo:
Amylases from Rhizopus oryzae and Rhizopus microsporus var. oligosporus were obtained using agro-industrial wastes as substrates in submerged batch cultures. The enzymatic complex was partially characterised for use in the production of glucose syrup. Type II wheat flour proved better than cassava bagasse as sole carbon source for amylase production. The optimum fermentation condition for both microorganisms was 96 hours at 30°C and the amylase thus produced was used for starch hydrolysis. The product of the enzymatic hydrolysis indicated that the enzyme obtained was glucoamylase, only glucose as final product was attained for both microorganisms. R. oligosporus was of greater interest than R. oryzae for amylase production, taking into account enzyme activity, cultivation time, thermal stability and pH range. Glucose syrup was produced using concentrated enzyme and 100 g L-1 starch in a 4 hours reaction at 50°C. The bioprocess studied can contribute to fungus glucoamylase production and application. © 2013 Institute of Chemistry, Slovak Academy of Sciences.
Resumo:
Contiene la asistencia, organización de los trabajos y resumen de los debates sobre los problemas ambientales y el desarrollo industrial; problemas asociados a la generación de residuos en diversas experiencias nacionales; la política ambiental en relación a la gestión de residuos; el sector industrial, la localización y el desarrollo tecnológico en la gestión de los residuos.
Resumo:
This study aimed at evaluating the oils extracted from seeds originating from agro-industrial waste, in order to identify the presence of bioactive compounds. Therefore, determinations of fatty acid profile, triacylglycerols, tocopherol composition, phytosterols, phenolic compounds, total carotenoids, and antioxidant capacity were performed in the oils of grape, guava, melon, passion fruit, pumpkin, soursop, and tomato seeds. Antioxidant capacity analysis was performed by the methods DPPH• , ABTS•+, FRAP, and β-carotene/linoleic acid, besides measure of oxidative stability in the oils. The oils showed to be predominantly unsaturated with high percentage of linoleic essential fatty acid (38.8 to 79.4%), besides presenting significant quantities of tocopherols, phytosterols, and phenolic compounds. Tomato and guava oils showed better results in the antioxidant capacity tests and pumpkin oil had higher induction period in the oxidative stability test (65.3 h). The results obtained in this study collect information that enables the use of new alternative sources of vegetable oils, obtained from agroindustrial waste, which may serve as raw material for food, chemical, and pharmaceutical industries.
Resumo:
Vegetal origin agro-industrial wastes are seen as a problem since the beginning of the industrial processes; however, they are becoming attractive as raw material for numerous purposes such as active enzymes and in the molecule bioprospecting area. Moreover, it is difficult to understand what the studied residue is consisted of in studies on agro-industrial waste, since the wastes names and constituents may vary according to the used equipment, as for waste from orange and mango processing. Thus, defining a specific waste, including comparisons between botanical and industrial descriptions, can help in understanding studies about wastes. The current review sought to contextualize such a scenario by gathering definitions, relevant information and studies on agro-industrial wastes and by-products, international enzymes market, and recent studies on bioactive compounds. In this context, waste from orange and mango are interesting because of the expression of these fruits on the world market; moreover, the processing does not include steps that could disrupt these biomolecules.
Resumo:
This Ph.D. research is comprised of three major components; (i) Characterization study to analyze the composition of defatted corn syrup (DCS) from a dry corn mill facility (ii) Hydrolysis experiments to optimize the production of fermentable sugars and amino acid platform using DCS and (iii) Sustainability analyses. Analyses of DCS included total solids, ash content, total protein, amino acids, inorganic elements, starch, total carbohydrates, lignin, organic acids, glycerol, and presence of functional groups. Total solids content was 37.4% (± 0.4%) by weight, and the mass balance closure was 101%. Total carbohydrates [27% (± 5%) wt.] comprised of starch (5.6%), soluble monomer carbohydrates (12%) and non-starch carbohydrates (10%). Hemicellulose components (structural and non-structural) were; xylan (6%), xylose (1%), mannan (1%), mannose (0.4%), arabinan (1%), arabinose (0.4%), galatactan (3%) and galactose (0.4%). Based on the measured physical and chemical components, bio-chemical conversion route and subsequent fermentation to value added products was identified as promising. DCS has potential to serve as an important fermentation feedstock for bio-based chemicals production. In the sugar hydrolysis experiments, reaction parameters such as acid concentration and retention time were analyzed to determine the optimal conditions to maximize monomer sugar yields while keeping the inhibitors at minimum. Total fermentable sugars produced can reach approximately 86% of theoretical yield when subjected to dilute acid pretreatment (DAP). DAP followed by subsequent enzymatic hydrolysis was most effective for 0 wt% acid hydrolysate samples and least efficient towards 1 and 2 wt% acid hydrolysate samples. The best hydrolysis scheme DCS from an industry's point of view is standalone 60 minutes dilute acid hydrolysis at 2 wt% acid concentration. The combined effect of hydrolysis reaction time, temperature and ratio of enzyme to substrate ratio to develop hydrolysis process that optimizes the production of amino acids in DCS were studied. Four key hydrolysis pathways were investigated for the production of amino acids using DCS. The first hydrolysis pathway is the amino acid analysis using DAP. The second pathway is DAP of DCS followed by protein hydrolysis using proteases [Trypsin, Pronase E (Streptomyces griseus) and Protex 6L]. The third hydrolysis pathway investigated a standalone experiment using proteases (Trypsin, Pronase E, Protex 6L, and Alcalase) on the DCS without any pretreatment. The final pathway investigated the use of Accellerase 1500® and Protex 6L to simultaneously produce fermentable sugars and amino acids over a 24 hour hydrolysis reaction time. The 3 key objectives of the techno-economic analysis component of this PhD research included; (i) Development of a process design for the production of both the sugar and amino acid platforms with DAP using DCS (ii) A preliminary cost analysis to estimate the initial capital cost and operating cost of this facility (iii) A greenhouse gas analysis to understand the environmental impact of this facility. Using Aspen Plus®, a conceptual process design has been constructed. Finally, both Aspen Plus Economic Analyzer® and Simapro® sofware were employed to conduct the cost analysis as well as the carbon footprint emissions of this process facility respectively. Another section of my PhD research work focused on the life cycle assessment (LCA) of commonly used dairy feeds in the U.S. Greenhouse gas (GHG) emissions analysis was conducted for cultivation, harvesting, and production of common dairy feeds used for the production of dairy milk in the U.S. The goal was to determine the carbon footprint [grams CO2 equivalents (gCO2e)/kg of dry feed] in the U.S. on a regional basis, identify key inputs, and make recommendations for emissions reduction. The final section of my Ph.D. research work was an LCA of a single dairy feed mill located in Michigan, USA. The primary goal was to conduct a preliminary assessment of dairy feed mill operations and ultimately determine the GHG emissions for 1 kilogram of milled dairy feed.
Resumo:
Binary and ternary combinations of sewage sludge ash (SSA) with marble dust (MD), fly ash (FA) and rice husk ash (RHA) as replacement in Portland cement pastes, were assessed. Several tests were carried out at different curing ages: thermogravimetry, density, water absorption, ultrasonic pulse velocity and mechanical strengths. Pozzolanic effects of the mineral admixtures, densities similar to control sample and improved absorptions when combining waste materials were identified. In general, the compressive strength reaches or exceeds the cement strength class, and blending SSA, FA and RHA (30% cement replacement) increase of strength by 9%, compared to the control sample, was achieved.
Resumo:
Issued Oct. 1977.