916 resultados para industrial data
Resumo:
The use of saturated two-level designs is very popular, especially in industrial applications where the cost of experiments is too high. Standard classical approaches are not appropriate to analyze data from saturated designs, since we could only get the estimates of the main factor effects and we would not have degrees of freedom to estimate the variance of the error. In this paper, we propose the use of empirical Bayesian procedures to get inferences for data obtained from saturated designs. The proposed methodology is illustrated assuming a simulated data set. © 2013 Growing Science Ltd. All rights reserved.
Resumo:
Industrial recurrent event data where an event of interest can be observed more than once in a single sample unit are presented in several areas, such as engineering, manufacturing and industrial reliability. Such type of data provide information about the number of events, time to their occurrence and also their costs. Nelson (1995) presents a methodology to obtain asymptotic confidence intervals for the cost and the number of cumulative recurrent events. Although this is a standard procedure, it can not perform well in some situations, in particular when the sample size available is small. In this context, computer-intensive methods such as bootstrap can be used to construct confidence intervals. In this paper, we propose a technique based on the bootstrap method to have interval estimates for the cost and the number of cumulative events. One of the advantages of the proposed methodology is the possibility for its application in several areas and its easy computational implementation. In addition, it can be a better alternative than asymptotic-based methods to calculate confidence intervals, according to some Monte Carlo simulations. An example from the engineering area illustrates the methodology.
Resumo:
Nonlinear principal component analysis (PCA) based on neural networks has drawn significant attention as a monitoring tool for complex nonlinear processes, but there remains a difficulty with determining the optimal network topology. This paper exploits the advantages of the Fast Recursive Algorithm, where the number of nodes, the location of centres, and the weights between the hidden layer and the output layer can be identified simultaneously for the radial basis function (RBF) networks. The topology problem for the nonlinear PCA based on neural networks can thus be solved. Another problem with nonlinear PCA is that the derived nonlinear scores may not be statistically independent or follow a simple parametric distribution. This hinders its applications in process monitoring since the simplicity of applying predetermined probability distribution functions is lost. This paper proposes the use of a support vector data description and shows that transforming the nonlinear principal components into a feature space allows a simple statistical inference. Results from both simulated and industrial data confirm the efficacy of the proposed method for solving nonlinear principal component problems, compared with linear PCA and kernel PCA.
Resumo:
Data visualization techniques are powerful in the handling and analysis of multivariate systems. One such technique known as parallel coordinates was used to support the diagnosis of an event, detected by a neural network-based monitoring system, in a boiler at a Brazilian Kraft pulp mill. Its attractiveness is the possibility of the visualization of several variables simultaneously. The diagnostic procedure was carried out step-by-step going through exploratory, explanatory, confirmatory, and communicative goals. This tool allowed the visualization of the boiler dynamics in an easier way, compared to commonly used univariate trend plots. In addition it facilitated analysis of other aspects, namely relationships among process variables, distinct modes of operation and discrepant data. The whole analysis revealed firstly that the period involving the detected event was associated with a transition between two distinct normal modes of operation, and secondly the presence of unusual changes in process variables at this time.
Resumo:
Spatial data are being increasingly used in a wide range of disciplines, a fact that is clearly reflected in the recent trend to add spatial dimensions to the conventional social sciences. Economics is by no means an exception. On one hand, spatial data are indispensable to many branches of economics such as economic geography, new economic geography, or spatial economics. On the other hand, macroeconomic data are becoming available at more and more micro levels, so that academics and analysts take it for granted that they are available not only for an entire country, but also for more detailed levels (e.g. state, province, and even city). The term ‘spatial economics data’ as used in this report refers to any economic data that has spatial information attached. This spatial information can be the coordinates of a location at best or a less precise place name as is used to describe administrative units. Obviously, the latter cannot be used without a map of corresponding administrative units. Maps are therefore indispensible to the analysis of spatial economic data without absolute coordinates. The aim of this report is to review the availability of spatial economic data that pertains specifically to Laos and academic studies conducted on such data up to the present. In regards to the availability of spatial economic data, efforts have been made to identify not only data that has been made available as geographic information systems (GIS) data, but also those with sufficient place labels attached. The rest of the report is organized as follows. Section 2 reviews the maps available for Laos, both in hard copy and editable electronic formats. Section 3 summarizes the spatial economic data available for Laos at the present time, and Section 4 reviews and categorizes the many economic studies utilizing these spatial data. Section 5 give examples of some of the spatial industrial data collected for this research. Section 6 provides a summary of the findings and gives some indication of the direction of the final report due for completion in fiscal 2010.
Resumo:
Abstract Heading into the 2020s, Physics and Astronomy are undergoing experimental revolutions that will reshape our picture of the fabric of the Universe. The Large Hadron Collider (LHC), the largest particle physics project in the world, produces 30 petabytes of data annually that need to be sifted through, analysed, and modelled. In astrophysics, the Large Synoptic Survey Telescope (LSST) will be taking a high-resolution image of the full sky every 3 days, leading to data rates of 30 terabytes per night over ten years. These experiments endeavour to answer the question why 96% of the content of the universe currently elude our physical understanding. Both the LHC and LSST share the 5-dimensional nature of their data, with position, energy and time being the fundamental axes. This talk will present an overview of the experiments and data that is gathered, and outlines the challenges in extracting information. Common strategies employed are very similar to industrial data! Science problems (e.g., data filtering, machine learning, statistical interpretation) and provide a seed for exchange of knowledge between academia and industry. Speaker Biography Professor Mark Sullivan Mark Sullivan is a Professor of Astrophysics in the Department of Physics and Astronomy. Mark completed his PhD at Cambridge, and following postdoctoral study in Durham, Toronto and Oxford, now leads a research group at Southampton studying dark energy using exploding stars called "type Ia supernovae". Mark has many years' experience of research that involves repeatedly imaging the night sky to track the arrival of transient objects, involving significant challenges in data handling, processing, classification and analysis.
Resumo:
Technology-mediated collaboration process has been extensively studied for over a decade. Most applications with collaboration concepts reported in the literature focus on enhancing efficiency and effectiveness of the decision-making processes in objective and well-structured workflows. However, relatively few previous studies have investigated the applications of collaboration schemes to problems with subjective and unstructured nature. In this paper, we explore a new intelligent collaboration scheme for fashion design which, by nature, relies heavily on human judgment and creativity. Techniques such as multicriteria decision making, fuzzy logic, and artificial neural network (ANN) models are employed. Industrial data sets are used for the analysis. Our experimental results suggest that the proposed scheme exhibits significant improvement over the traditional method in terms of the time–cost effectiveness, and a company interview with design professionals has confirmed its effectiveness and significance.
Resumo:
This paper builds on work presented in the first paper, Part 1 [1] and is of equal significance. The paper proposes a novel compensation method to preserve the integrity of step-fault signatures prevalent in various processes that can be masked during the removal of both auto- and cross correlation. Using industrial data, the paper demonstrates the benefit of the proposed method, which is applicable to chemical, electrical, and mechanical process monitoring. This paper, (and Part 1 [1]), has led to further work supported by EPSRC grant GR/S84354/01 involving kernel PCA methods.
Resumo:
This paper presents two new approaches for use in complete process monitoring. The firstconcerns the identification of nonlinear principal component models. This involves the application of linear
principal component analysis (PCA), prior to the identification of a modified autoassociative neural network (AAN) as the required nonlinear PCA (NLPCA) model. The benefits are that (i) the number of the reduced set of linear principal components (PCs) is smaller than the number of recorded process variables, and (ii) the set of PCs is better conditioned as redundant information is removed. The result is a new set of input data for a modified neural representation, referred to as a T2T network. The T2T NLPCA model is then used for complete process monitoring, involving fault detection, identification and isolation. The second approach introduces a new variable reconstruction algorithm, developed from the T2T NLPCA model. Variable reconstruction can enhance the findings of the contribution charts still widely used in industry by reconstructing the outputs from faulty sensors to produce more accurate fault isolation. These ideas are illustrated using recorded industrial data relating to developing cracks in an industrial glass melter process. A comparison of linear and nonlinear models, together with the combined use of contribution charts and variable reconstruction, is presented.
Resumo:
Treasure et al. (2004) recently proposed a new sub space-monitoring technique, based on the N4SID algorithm, within the multivariate statistical process control framework. This dynamic-monitoring method requires considerably fewer variables to be analysed when compared with dynamic principal component analysis (PCA). The contribution charts and variable reconstruction, traditionally employed for static PCA, are analysed in a dynamic context. The contribution charts and variable reconstruction may be affected by the ratio of the number of retained components to the total number of analysed variables. Particular problems arise if this ratio is large and a new reconstruction chart is introduced to overcome these. The utility of such a dynamic contribution chart and variable reconstruction is shown in a simulation and by application to industrial data from a distillation unit.
Resumo:
El artículo presenta los resultados de una investigación desarrollada como proyecto de grado para optar el título de Magister en Dirección en la cual se identifican los impactos que en materia ambiental son generados a lo largo de los procesos realizados dentro de los frigoríficos en Colombia y evaluar la manera como se realiza la gestión ambiental de los frigoríficos cárnicos más representativos en Colombia, como parte de esta gestión es importante revisar la política de Estado y finalmente, se proponen algunas acciones de tipo directivo en las cuáles todos los actores de la cadena cárnica pueden participar con el objetivo de mejorar el tema ambiental de éstas organizaciones en Colombia.
Resumo:
Este trabajo de grado propone identificar la utilidad de las relaciones estratégicas comunitarias y el marketing en la administración de negocios con clientes corporativos, también se toman en cuenta conceptos como el marketing organizacional y relacional, estos conceptos ayudan en la investigación a determinar relaciones estratégicas entre las empresas, y el beneficio que estas le generan a las corporaciones; para así fomentar la implementación de estas estrategias en a las empresas a nivel nacional e internacional, así mismo, identificar el concepto de comunidad que tienen los clientes corporativos y como este concepto se puede adaptar al entorno que los rodea. Con el fin de entender las funciones y características de un cliente corporativo, así como su comportamiento, los objetivos específicos de la investigación son describir las estrategias de marketing en la administración de negocios con clientes corporativos, determinar si existe el concepto de comunidad en la administración de negocios con clientes corporativos y determinar si se utilizan relaciones estratégicas comunitarias en la administración de negocios con clientes corporativos. La metodología que se planteó usar fue teórica-conceptual, teniendo en cuenta el marketing y las relaciones estratégicas comunitarias de los clientes corporativos. Llevando la investigación al ámbito de la gerencia y dirección, los resultados que se obtuvieron gracias a la investigación, ayudaran a potenciar la dirección de las empresas, donde se evalué la verdadera utilidad de las estrategias basadas en las relaciones comunitarias y marketing en los negocios con clientes corporativos. Las estrategias comunitarias y el marketing influencian de manera directa las relaciones de las compañias con sus clientes corporativos, debido a que marketing nos permite extender la relación y generar una utilidad a futuro entre ambas partes. De la investigación se concluye que las empresas que logran crear estrategias comunitarias y relaciones estrechas entre ellas, tienden a tener mejores utilidades en el largo plazo y ser empresas más sostenibles.
Resumo:
This research has responded to the need for diagnostic reference tools explicitly linking the influence of environmental uncertainty and performance within the supply chain. Uncertainty is a key factor influencing performance and an important measure of the operating environment. We develop and demonstrate a novel reference methodology based on data envelopment analysis (DEA) for examining the performance of value streams within the supply chain with specific reference to the level of environmental uncertainty they face. In this paper, using real industrial data, 20 product supply value streams within the European automotive industry sector are evaluated. Two are found to be efficient. The peer reference groups for the underperforming value streams are identified and numerical improvement targets are derived. The paper demonstrates how DEA can be used to guide supply chain improvement efforts through role-model identification and target setting, in a way that recognises the multiple dimensions/outcomes of the supply chain process and the influence of its environmental conditions. We have facilitated the contextualisation of environmental uncertainty and its incorporation into a specific diagnostic reference tool.
Resumo:
Due to the current need of the industry to integrate data of the beginning of production originating from of several sources and of transforming them in useful information for sockets of decisions, a search exists every time larger for systems of visualization of information that come to collaborate with that functionality. On the other hand, a common practice nowadays, due to the high competitiveness of the market, it is the development of industrial systems that possess characteristics of modularity, distribution, flexibility, scalability, adaptation, interoperability, reusability and access through web. Those characteristics provide an extra agility and a larger easiness in adapting to the frequent changes of demand of the market. Based on the arguments exposed above, this work consists of specifying a component-based architecture, with the respective development of a system based on that architecture, for the visualization of industrial data. The system was conceived to be capable to supply on-line information and, optionally, historical information of variables originating from of the beginning of production. In this work it is shown that the component-based architecture developed possesses the necessary requirements for the obtaining of a system robust, reliable and of easy maintenance, being, like this, in agreement with the industrial needs. The use of that architecture allows although components can be added, removed or updated in time of execution, through a manager of components through web, still activating more the adaptation process and updating of the system
Resumo:
The control of industrial processes has become increasingly complex due to variety of factory devices, quality requirement and market competition. Such complexity requires a large amount of data to be treated by the three levels of process control: field devices, control systems and management softwares. To use data effectively in each one of these levels is extremely important to industry. Many of today s industrial computer systems consist of distributed software systems written in a wide variety of programming languages and developed for specific platforms, so, even more companies apply a significant investment to maintain or even re-write their systems for different platforms. Furthermore, it is rare that a software system works in complete isolation. In industrial automation is common that, software had to interact with other systems on different machines and even written in different languages. Thus, interoperability is not just a long-term challenge, but also a current context requirement of industrial software production. This work aims to propose a middleware solution for communication over web service and presents an user case applying the solution developed to an integrated system for industrial data capture , allowing such data to be available simplified and platformindependent across the network