942 resultados para induction motors
Resumo:
This paper discusses the need to simultaneously monitor voltage unbalance and harmonic distortions in addition to root-mean-square voltage values. An alternative way to obtain the parameters related to voltage unbalance at fundamental frequency as well as voltage harmonic distortions is here proposed, which is based on the representation of instantaneous values at the axes and at the instantaneous Euclidean norm. A new power-quality (PQ) index is then proposed to combine the effects of voltage unbalance and harmonic distortions. This new index is easily implemented into existing electronic power meters. This PQ index is determined from the analysis of temperature rise in induction motor windings, which were tested for long periods of time. This paper also shows that these voltage disturbances, which are harmful to the lifetime expectancy of motors, can be measured by alternative ways in relation to conventional methods. Although this paper deals with induction motors only, the results show the relevance for further studies on other pieces of equipment.
Resumo:
Dissertation to obtain the degree of Master in Electrical and Computer Engineering
Resumo:
Design aspects of the Transversally Laminated Anisotropic (TLA) Synchronous Reluctance Motor (SynRM) are studied and the machine performance analysis compared to the Induction Motor (IM) is done. The SynRM rotor structure is designed and manufactured for a30 kW, four-pole, three-phase squirrel cage induction motor stator. Both the IMand SynRM were supplied by a sensorless Direct Torque Controlled (DTC) variablespeed drive. Attention is also paid to the estimation of the power range where the SynRM may compete successfully with a same size induction motor. A technicalloss reduction comparison between the IM and SynRM in variable speed drives is done. The Finite Element Method (FEM) is used to analyse the number, location and width of flux barriers used in a multiple segment rotor. It is sought for a high saliency ratio and a high torque of the motor. It is given a comparison between different FEM calculations to analyse SynRM performance. The possibility to take into account the effect of iron losses with FEM is studied. Comparison between the calculated and measured values shows that the design methods are reliable. A new application of the IEEE 112 measurement method is developed and used especially for determination of stray load losses in laboratory measurements. The study shows that, with some special measures, the efficiency of the TLA SynRM is equivalent to that of a high efficiency IM. The power factor of the SynRM at rated load is smaller than that of the IM. However, at lower partial load this difference decreases and this, probably, brings that the SynRM gets a better power factor in comparison with the IM. The big rotor inductance ratio of the SynRM allows a good estimating of the rotor position. This appears to be very advantageous for the designing of the rotor position sensor-less motor drive. In using the FEM designed multi-layer transversally laminated rotor with damper windings it is possible to design a directly network driven motor without degrading the motorefficiency or power factor compared to the performance of the IM.
Resumo:
Induction motors are widely used in industry, and they are generally considered very reliable. They often have a critical role in industrial processes, and their failure can lead to significant losses as a result of shutdown times. Typical failures of induction motors can be classified into stator, rotor, and bearing failures. One of the reasons for a bearing damage and eventually a bearing failure is bearing currents. Bearing currents in induction motors can be divided into two main categories; classical bearing currents and inverter-induced bearing currents. A bearing damage caused by bearing currents results, for instance, from electrical discharges that take place through the lubricant film between the raceways of the inner and the outer ring and the rolling elements of a bearing. This phenomenon can be considered similar to the one of electrical discharge machining, where material is removed by a series of rapidly recurring electrical arcing discharges between an electrode and a workpiece. This thesis concentrates on bearing currents with a special reference to bearing current detection in induction motors. A bearing current detection method based on radio frequency impulse reception and detection is studied. The thesis describes how a motor can work as a “spark gap” transmitter and discusses a discharge in a bearing as a source of radio frequency impulse. It is shown that a discharge, occurring due to bearing currents, can be detected at a distance of several meters from the motor. The issues of interference, detection, and location techniques are discussed. The applicability of the method is shown with a series of measurements with a specially constructed test motor and an unmodified frequency-converter-driven motor. The radio frequency method studied provides a nonintrusive method to detect harmful bearing currents in the drive system. If bearing current mitigation techniques are applied, their effectiveness can be immediately verified with the proposed method. The method also gives a tool to estimate the harmfulness of the bearing currents by making it possible to detect and locate individual discharges inside the bearings of electric motors.
Resumo:
The most common reason for a low-voltage induction motor breakdown is a bearing failure. Along with the increasing popularity of modern frequency converters, bearing failures have become the most important motor fault type. Conditions in which bearing currents are likely to occur are generated as a side effect of fast du/dt switching transients. Once present, different types of bearing currents can accelerate the mechanical wear of bearings by causing deformation of metal parts in the bearing and degradation of the lubricating oil properties.The bearing current phenomena are well known, and several bearing current measurement and mitigation methods have been proposed. Nevertheless, in order to develop more feasible methods to measure and mitigate bearing currents, better knowledge of the phenomena is required. When mechanical wear is caused by bearing currents, the resulting aging impact has to be monitored and dealt with. Moreover, because of the stepwise aging mechanism, periodically executed condition monitoring measurements have been found ineffective. Thus, there is a need for feasible bearing current measurement methods that can be applied in parallel with the normal operation of series production drive systems. In order to reach the objectives of feasibility and applicability, nonintrusive measurement methods are preferred. In this doctoral dissertation, the characteristics and conditions of bearings that are related to the occurrence of different kinds of bearing currents are studied. Further, the study introduces some nonintrusive radio-frequency-signal-based approaches to detect and measure parameters that are associated with the accelerated bearing wear caused by bearing currents.
Resumo:
Induction motors are largely used in several industry sectors. The selection of an induction motor has still been inaccurate because in most of the cases the load behavior in its shaft is completely unknown. The proposal of this article is to use artificial neural networks for torque estimation with the purpose of best selecting the induction motors rather than conventional methods, which use classical identification techniques and mechanical load modeling. Since proposed approach estimates the torque behavior from the transient to the steady state, one of its main contributions is the potential to also be implemented in control schemes for real-time applications. Simulation results are also presented to validate the proposed approach.
Resumo:
Condition monitoring is used to increase machinery availability and machinery performance, reducing consequential damage, increasing machine life, reducing spare parts inventories, and reducing breakdown maintenance. An efficient real time vibration measurement and analysis instruments is capable of providing warning and predicting faults at early stages. In this paper, a new methodology for the implementation of vibration measurement and analysis instruments in real time based on circuit architecture mapped from a MATLAB/Simulink model is presented. In this study, signal processing applications such as FIR filters and fast Fourier transform are treated as systems, which are implemented in hardware using a system generator toolbox, which translates a Simulink model in a hardware description language - HDL for FPGA implementations.
Resumo:
The induction motors are largely used in several industry sectors. The dimensioning of an induction motor has still been inaccurate because in most of the cases the load behavior in its shaft is completely unknown. The proposal of this paper is to use artificial neural networks as tool for dimensioning of induction motors rather than conventional methods, which use classical identification techniques and mechanical load modeling. Simulation results are also presented to validate the proposed approach.
Resumo:
Three-Phase Induction Motors (TIM) and Arc Welding Machines (AWM) are loads of special behavior widely used in industrial and commercial installations, and therefore may contribute significantly to the deterioration of the quality of energy supplied by utilities. This paper proposes a modeling in constant power of the unbalanced TIM starting using Genetic Algorithm (GA) and AWM short-circuit based on their statics characteristics curves. The proposed models are compared with the conventional models in the literature. The results showed the good performance of the proposed models, allowing a more precise analysis of the real requests of these loads.
Resumo:
This paper presents two diagnostic methods for the online detection of broken bars in induction motors with squirrel-cage type rotors. The wavelet representation of a function is a new technique. Wavelet transform of a function is the improved version of Fourier transform. Fourier transform is a powerful tool for analyzing the components of a stationary signal. But it is failed for analyzing the non-stationary signal whereas wavelet transform allows the components of a non-stationary signal to be analyzed. In this paper, our main goal is to find out the advantages of wavelet transform compared to Fourier transform in rotor failure diagnosis of induction motors.
Resumo:
The research carried out in this thesis was mainly concerned with the effects of large induction motors and their transient performance in power systems. Computer packages using the three phase co-ordinate frame of reference were developed to simulate the induction motor transient performance. A technique using matrix algebra was developed to allow extension of the three phase co-ordinate method to analyse asymmetrical and symmetrical faults on both sides of the three phase delta-star transformer which is usually required when connecting large induction motors to the supply system. System simulation, applying these two techniques, was used to study the transient stability of a power system. The response of a typical system, loaded with a group of large induction motors, two three-phase delta-star transformers, a synchronous generator and an infinite system was analysed. The computer software developed to study this system has the advantage that different types of fault at different locations can be studied by simple changes in input data. The research also involved investigating the possibility of using different integrating routines such as Runge-Kutta-Gill, RungeKutta-Fehlberg and the Predictor-Corrector methods. The investigation enables the reduction of computation time, which is necessary when solving the induction motor equations expressed in terms of the three phase variables. The outcome of this investigation was utilised in analysing an introductory model (containing only minimal control action) of an isolated system having a significant induction motor load compared to the size of the generator energising the system.
Resumo:
The asynchronous polyphase induction motor has been the motor of choice in industrial settings for about the past half century because power electronics can be used to control its output behavior. Before that, the dc motor was widely used because of its easy speed and torque controllability. The two main reasons why this might be are its ruggedness and low cost. The induction motor is a rugged machine because it is brushless and has fewer internal parts that need maintenance or replacement. This makes it low cost in comparison to other motors, such as the dc motor. Because of these facts, the induction motor and drive system have been gaining market share in industry and even in alternative applications such as hybrid electric vehicles and electric vehicles. The subject of this thesis is to ascertain various control algorithms’ advantages and disadvantages and give recommendations for their use under certain conditions and in distinct applications. Four drives will be compared as fairly as possible by comparing their parameter sensitivities, dynamic responses, and steady-state errors. Different switching techniques are used to show that the motor drive is separate from the switching scheme; changing the switching scheme produces entirely different responses for each motor drive.
Resumo:
This paper presents a compact embedded fuzzy system for three-phase induction-motor scalar speed control. The control strategy consists in keeping constant the voltage-frequency ratio of the induction-motor supply source. A fuzzy-control system is built on a digital signal processor, which uses speed error and speed-error variation to change both the fundamental voltage amplitude and frequency of a sinusoidal pulsewidth modulation inverter. An alternative optimized method for embedded fuzzy-system design is also proposed. The controller performance, in relation to reference and load-torque variations, is evaluated by experimental results. A comparative analysis with conventional proportional-integral controller is also achieved.
Resumo:
The single phase induction motors needs two stator windings to produce rotating magnetic field : one main winding and the other auxiliary winding. The aim of the auxiliary winding is to create the rotating electromagnetic field when the machine is started-up and is afterwards turned off, generally through the centrifugal switch coupled together with the shaft of the machine rotor. The main purpose of this document is to evaluate the influence that the two windings have on the external characteristics of the single phase induction motor. For this purpose, two different kinds of windings were carried out and simulated, with the proposal to obtain some benefits. The main winding and the auxiliary winding were prepared and mounted on a prototype. The simulation was done via software based FEM, to make the extraction and results analysis possible. This results are shown at the end this document.