990 resultados para indoor hockey
Resumo:
The aim of this investigation was to establish median performance profiles for the six playing positions in elite women’s indoor hockey and then identify whether these position-specific profiles could discriminate between qualifying (top four), mid-table and relegated teams in the 2011-12 England Hockey premier league. Successful passing in relegated teams was significantly lower (p<0.008) than in mid-table and qualifying teams in four of the five outfield positions. Furthermore, the right backs of qualifying teams demonstrated significantly fewer (p<0.008) unsuccessful passes (x̃=15.5 ±CLs 15.0 and 10.0 respectively) and interceptions (x̃=4.0 ±CLs 4.0 and 3.0 respectively) than relegated teams (x̃=19.5 ±CLs 21.0 and 17.0; x̃=7.5 ±CLs 8.0 and 6.0 respectively). Finally, the right forwards of relegated teams demonstrated significantly fewer (p<0.008) successful interceptions (x̃=4.0 ±CLs 5.0 and 4.0 respectively) than qualifying teams (x̃=5.0 ±CLs 6.0 and 3.0 respectively) and significantly more (p<0.008) unsuccessful interceptions (x̃=5.5 ±CLs 6.0 and 4.0 respectively) than mid-table teams (x̃=3.0 ±CLs 3.0 and 2.0 respectively). Based on these findings, coaches should adapt tactical strategies and personnel deployment accordingly to enhance the likelihood of preparing a qualifying team. Research should build from these data to examine dribbling, pressing and patterns of play when outletting.
Resumo:
Die Frage wie großmotorische Bewegungen gelernt werden beschäftigt nicht nur Sportler, Trainer und Sportlehrer sondern auch Ärzte und Physiotherapeuten. Die sportwissenschaftlichen Teildisziplinen Bewegungs- und Trainingswissenschaft versuchen diese Frage sowohl im Sinne der Grundlagenforschung (Wie funktioniert Bewegungslernen?) als auch hinsichtlich der praktischen Konsequenzen (Wie lehrt man Bewegungen?) zu beantworten. Innerhalb dieser Themenfelder existieren Modelle, die Bewegungslernen als gezielte und extern unterstützte Ausbildung zentralnervöser Bewegungsprogramme verstehen und solche, die Lernen als Selbstorganisationsprozess interpretieren. Letzteren ist das Differenzielle Lernen und Lehren (Schöllhorn, 1999) zuzuordnen, das die Notwendigkeit betont, Bewegungen durch die Steigerung der Variationen während der Aneignungsphase zu lernen und zu lehren. Durch eine Vielzahl an Variationen, so die Modellannahme, findet der Lernende ohne externe Vorgaben selbstorganisiert ein individuelles situatives Optimum. Die vorliegende Arbeit untersucht, welchen Einfluss Variationen verschiedener Art und Größe auf die Lern- und Aneignungsleistung großmotorischer Bewegungen haben und in wie fern personenübergreifende Optima existieren. In zwei Experimenten wird der Einfluss von räumlichen (Bewegungsausführung, Bewegungsergebnis) und zeitlichen Variationen (zeitliche Verteilung der Trainingsreize) auf die Aneignungs- und Lernleistung großmotorischer sportlicher Bewegungen am Beispiel zweier technischer Grundfertigkeiten des Hallenhockeys untersucht. Die Ergebnisse der Experimente stützen die bisherige Befundlage zum Differenziellen Lernen und Lehren, wonach eine Zunahme an Variation in der Aneignungsphase zu größeren Aneignungs- und Lernleistungen führt. Zusätzlich wird die Annahme bestätigt, dass ein Zusammenhang von Variationsbereich und Lernrate in Form eines Optimaltrends vorliegt. Neu sind die Hinweise auf die Dynamik von motorischen Lernprozessen (Experiment 1). Hier scheinen individuelle Faktoren (z. B. die Lernbiografie) als auch die Phase im Lernprozess (Aneignung, Lernen) Einfluss zu haben auf den Umfang und die Struktur eines für die optimale Adaptation notwendigen Variationsbereichs. Darüber hinaus weisen die Befunde auf verschiedene Aneignungs- und Lerneffekte aufgrund alleiniger Variation der zeitlichen Verteilung bei ansonsten gleichen Trainingsreizen hin (Experiment 2). Für zukünftige Forschungsarbeiten zum Erlernen großmotorischer Bewegungen und für die sportliche Praxis dürfte es daher erkenntnisreich sein, die Historie der intrinsischen Dynamik der lernenden Systeme stärker zu berücksichtigen. Neben Fragestellungen für die Grundlagenforschung zum (Bewegungs-)Lernen ließen sich hieraus unmittelbar praxisrelevante Erkenntnisse darüber ableiten, wie Bewegungslernprozesse mittels verschiedener Variationsbereiche strukturiert und gesteuert werden könnten.
Resumo:
Introduction: The prevalence of coronary artery disease (CAD) is ever increasing in western industrialized societies. An individuals overall risk for CAD may be quantified by integrating a number of factors including, but not limited to, cardiorespiratory fitness, body composition, blood lipid profile and blood pressure. It might be expected that interventions aimed at improving any or all of these independent factors might improve an individual 's overall risk. To this end, the influence of standard endurance type exercise on cardiorespiratory fitness, body composition, blood lipids and blood pressure, and by extension the reduction of coronary risk factors, is well documented. On the other hand, interval training (IT) has been shown to provide an extremely powerful stimulus for improving indices of cardiorespiratory function but the influence of this training type on coronary risk factors is unknown. Moreover, the vast majority of studies investigating the effects of IT on fitness have used laboratory type training protocols. As a result of this, the influence of participation in interval-type recreational sports on cardiorespiratory fitness and coronary risk factors is unknown. Aims: The aim of the present study was to evaluate the effectiveness of recreational ball hockey, a sport associated with interval-type activity patterns, on indices of aerobic function and coronary risk factors in sedentary men in the approximate age range of 30 - 60 years. Individual risk factors were compiled into an overall coronary risk factor score using the Framingham Point Scale (FPS). Methods: Twenty-four sedentary males (age range 30 - 60) participated in the study. Subject activity level was assessed apriori using questionnaire responses. All subjects (experimental and control) were assessed to have been inactive and sedentary prior to participation in the study. The experimental group (43 ± 3 years; 90 ± 3 kg) (n = 11) participated in one season of recreational ball hockey (our surrogate for IT). Member of this group played a total of 16 games during an 11 week span. During this time, the control group (43 ± 2 years; 89 ± 2 kg) (n = 11) performed no training and continued with their sedentary lifestyle. Prior to and following the ball hockey season, experimental and control subjects were tested for the following variables: 1) cardiorespiratory fitness (as V02 Max) 2) blood lipid profile 3) body composition 5) waist to hip ratio 6) blood glucose levels and 7) blood pressure. Subject V02 Max was assessed using the Rockport submaximal walking test on an indoor track. To assess body composition we determined body mass ratio (BMI), % body fat, % lean body mass and waist to hip ratio. The blood lipid profile included high density lipoprotein, low density lipoprotein and total cholesterol levels; in addition, the ratio of total cholesterol to high density was calculated. Blood triglycerides were also assessed. All data were analyzed using independent t - tests and all data are expressed as mean ± standard error. Statistical significance was accepted at p :S 0.05. Results: Pre-test values for all variables were similar between the experimental and control group. Moreover, although the intervention used in this study was associated with changes in some variables for subjects in the experimental group, subjects in the control group did not exhibit any changes over the same time period. BODY COMPOSITION: The % body fat of experimental subjects decreased by 4.6 ± 0.5%, from 28.1 ± 2.6 to 26.9 ± 2.5 % while that of the control group was unchanged at 22.7 ± 1.4 and 22.2 ± 1.3 %. However, lean body mass of experimental and control subjects did not change at 64.3 ± 1.3 versus 66.1 ± 1.3 kg and 65.5 ± 0.8 versus 64.7 ± 0.8 kg, respectively. In terms of body mass index and waist to hip ratio, neither the experimental nor the control group showed any significant change. Respective values for the waist to hip ratio and body mass index (pre and post) were as follows: 1 ± 0.1 vs 0.9 ± 0.1 (experimental) and 0.9 ± 0.1 versus 0.9 ± 0.1 (controls) while for BMI they were 29 ± 1.4 versus 29 ± 1.2 (experimental) and 26 ± 0.7 vs. 26 ± 0.7 (controls). CARDIORESPIRATORY FITNESS: In the experimental group, predicted values for absolute V02 Max increased by 10 ± 3% (i.e. 3.3 ± 0.1 to 3.6 ± 0.1 liters min -1 while that of control subjects did not change (3.4 ± 0.2 and 3.4 ± 0.2 liters min-I). In terms of relative values for V02 Max, the experimental group increased by 11 ± 2% (37 ± 1.4 to 41 ± 1.4 ml kg-l min-I) while that of control subjects did not change (41 ± 1.4 and 40 ± 1.4 ml kg-l min-I). BLOOD LIPIDS: Compared to pre-test values, post-test values for HDL were decreased by 14 ± 5 % in the experiment group (from 52.4 ± 4.4 to 45.2 ± 4.3 mg dl-l) while HDL data for the control group was unchanged (49.7 ± 3.6 and 48.3 ± 4.1 mg dl-l, respectively. On the other hand, LDL levels did not change for either the experimental or control group (110.2 ± 10.4 versus 112.3 ± 7.1 mg dl-1 and 106.1 ± 11.3 versus 127 ± 15.1 mg dl-1, respectively). Further, total cholesterol did not change in either the experimental or control group (181.3 ± 8.7 mg dl-1 versus 178.7± 4.9 mg dl-l) and 190.7 ± 12.2 versus 197.1 ± 16.1 mg dl-1, respectively). Similarly, the ratio of TC/HDL did not change for either the experimental or control group (3.8 ± 0.4 versus 4.5 ± 0.5 and 4 ± 0.4 versus 4.2 ± 0.4, respectively). Blood triglyceride levels were also not altered in either the experimental or control group (100.3 ± 19.6 versus 114.8 ± 15.3 mg dl-1 and 140 ± 23.5 versus 137.3 ± 17.9 mg dl-l, respectively). BLOOD GLUCOSE: Fasted blood glucose levels did not change in either the experimental or control group. Pre- and post-values for experimental and control groups were 92.5 ± 4.8 versus 93.3 ± 4.3 mg dl-l and 92.3 ± 11.3 versus 93.2 ± 2.6 mg dl-1 , respectively. BLOOD PRESSURE: No aspect of blood pressure was altered in either the experimental or control group. For example, pre- and post-test systolic blood pressures were 131 ± 2 versus 129 ± 2 mmHg (experimental) and 123 ± 2 and 125 ± 2 mmHg (controls), respectively. Pre- and post-test diastolic blood pressures were 84 ± 2 and 83 ± 2 mmHg (experimental) and 81 ± 1 versus 82 ± 1 mmHg, respectively. Similarly, calculated pulse pressure was not altered in the experimental or control as pre- and post-test values were 47 ± 1 versus 47 ± 2 mmlHg and 42 ± 2 versus 43 ± 2 mmHg, respectively. FRAMINGHAM POINT SCORE: The concerted changes reported above produced an increased risk in the Framingham Point Score for the subjects in the experimental group. For example, the pre- and post-test FPS increased from 1.4 ± 0.9 to 2.7 ± 0.7. On the other hand, pre- and post-test scores for the control group were 1.8 ± 1 versus 1.8 ± 0.9. Conclusions: Our data confirms previous studies showing that interval-type exercise is a useful intervention for increasing aerobic fitness. Moreover, the increase in V02 Max we found in response to limited participation in ball hockey (i.e. 16 games) suggests that recreational sport may help reduce this aspect of coronary risk in previously sedentary individual. On the other hand, our results showing little or no positive change in body composition, blood lipids or blood pressures suggest that one season of recreational sport in not in of itself a powerful enough stimulus to reduce the overall risk of coronary artery disease. In light of this, it is recommended that, in addition to participation in recreational sport, the performance of regular physical activity is used as an adjunct to provide a more powerful overall stimulus for decreasing coronary risk factors. LIMITATIONS: The increase in the FPS we found for the experimental group, indicative of an increased risk for coronary disease, was largely due to the large decrease in HDL we observed after compared to above one season of ball hockey. In light of the fact that cardiorespiratory fitness was increased and % body fat was decreased, as well as the fact that other parameters such as blood pressure showed positive (but non statistically significant) trends, the possibility that the decrease in HDL showed by our data was anomalous should be considered. FUTURE DIRECTIONS: The results of this study suggesting that recreational sport may be a potentially useful intervention in the reduction of CAD require to be corroborated by future studies specifically employing 1) more rigorous assessment of fitness and fitness change and 2) more prolonged or frequent participants.
Resumo:
The occurrence and levels of airborne polycyclic aromatic hydrocarbons and volatile organic compounds in selected non-industrial environments in Brisbane have been investigated as part of an integrated indoor air quality assessment program. The most abundant and most frequently encountered compounds include, nonanal, decanal, texanol, phenol, 2-ethyl-1-hexanol, ethanal, naphthalene, 2,6-tert-butyl-4-methyl-phenol (BHT), salicylaldehyde, toluene, hexanal, benzaldehyde, styrene, ethyl benzene, o-, m- and pxylenes, benzene, n-butanol, 1,2-propandiol, and n-butylacetate. Many of the 64 compounds usually included in the European Collaborative Action method of TVOC analysis were below detection limits in the samples analysed. In order to extract maximum amount of information from the data collected, multivariate data projection methods have been employed. The implications of the information extracted on source identification and exposure control are discussed.
Resumo:
Characterization of indoor particle sources from 14 residential houses in Brisbane, Australia, was performed. The approximation of PM2.5 and the submicrometre particle number concentrations were measured simultaneously for more than 48 h in the kitchen of all the houses by using a photometer (DustTrak) and a condensation particle counter (CPC), respectively. From the real time indoor particle concentration data and a diary of indoor activities, the indoor particle sources were identified. The study found that among the indoor activities recorded in this study, frying, grilling, stove use, toasting, cooking pizza, smoking, candle vaporizing eucalyptus oil and fan heater use, could elevate the indoor particle number concentration levels by more than five times. The indoor approximation of PM2.5 concentrations could be close to 90 times, 30 times and three times higher than the background levels during grilling, frying and smoking, respectively.
Resumo:
As part of a large study investigating indoor air in residential houses in Brisbane, Australia, the purpose of this work was to quantify indoor exposure to submicrometer particles and PM2.5 for the inhabitants of 14 houses. Particle concentrations were measured simultaneously for more than 48 hours in the kitchens of all the houses by using a condensation particle counter (CPC) and a photometer (DustTrak). The occupants of the houses were asked to fill in a diary, noting the time and duration of any activity occurring throughout the house during measurement, as well as their presence or absence from home. From the time series concentration data and the information about indoor activities, exposure to the inhabitants of the houses was calculated for the entire time they spent at home as well as during indoor activities resulting in particle generation. The results show that the highest median concentration level occurred during cooking periods for both particle number concentration (47.5´103 particles cm-3) and PM2.5 concentration (13.4 mg m-3). The highest residential exposure period was the sleeping period for both particle number exposure (31%) and PM2.5 exposure (45.6%). The percentage of the average residential particle exposure level in total 24h particle exposure level was approximating 70% for both particle number and PM2.5 exposure.
Resumo:
The relationship between indoor and outdoor concentration levels of particles in the absence and in the presence of indoor sources has been attracting an increasing level of attention. Understanding of the relationship and the mechanisms driving it, as well as the ability to quantify it, are of importance for assessment of source contribution, assessment of human exposure and for control and management of particles. It became particularly important to address this topic when evidence came from epidemiological studies on the close association between outdoor concentration levels of particles and health effects, yet with many studies showing that indoor concentrations could be significantly higher than those outdoors. This paper presents a summary of an extensive literature review on this topic conducted with an aim to identify general trends in relation to the I/O relationship emerging from studies conducted worldwide. The review considered separately a larger body of papers published on PM10, PM2.5, as well as the smaller database on particle number and number or volume size distribution. A specific focus of this paper is on naturally ventilated houses. The conclusion from the review is that despite the multiplicity of factors that play role in affecting the relationship, there are clear trends emerging in relation to the I/O relationship for particle mass concentration, enabling more general predictions to be made about the relationship. However, more research is still needed on particle number concentration and size distribution.
Resumo:
Temporal variations caused by pedestrian movement can significantly affect the channel capacity of indoor MIMOOFDM wireless systems. This paper compares systematic measurements of MIMO-OFDM channel capacity in presence of pedestrians with predicted MIMO-OFDM channel capacity values using geometric optics-based ray tracing techniques. Capacity results are presented for a single room environment using 5.2 GHz with 2x2, 3x3 and 4x4 arrays as well as a 2.45 GHz narrowband 8x8 MIMO array. The analysis shows an increase of up to 2 b/s/Hz on instant channel capacity with up to 3 pedestrians. There is an increase of up to 1 b/s/Hz in the average capacity of the 4x4 MIMO-OFDM channel when the number of pedestrians goes from 1 to 3. Additionally, an increment of up to 2.5 b/s/Hz in MIMO-OFDM channel capacity was measured for a 4x4 array compared to a 2x2 array in presence of pedestrians. Channel capacity values derived from this analysis are important in terms of understanding the limitations and possibilities for MIMO-OFDM systems in indoor populated environments.
Resumo:
Effects of pedestrian movement on multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) channel capacity have been investigated using experiment and simulation. The experiment was conducted at 5.2 GHz by a MIMO-OFDM packet transmission demonstrator using four transmitters and four receivers built in-house. Geometric optics based ray tracing technique was used to simulate the experimental scenarios. Changes in the channel capacity dynamic range have been analysed for different number of pedestrian (0-3) and antennas (2-4). Measurement and simulation results show that the dynamic range increases with the number of pedestrian and the number of antennas on the transmitter and receiver array.
Resumo:
For robots to operate in human environments they must be able to make their own maps because it is unrealistic to expect a user to enter a map into the robot’s memory; existing floorplans are often incorrect; and human environments tend to change. Traditionally robots have used sonar, infra-red or laser range finders to perform the mapping task. Digital cameras have become very cheap in recent years and they have opened up new possibilities as a sensor for robot perception. Any robot that must interact with humans can reasonably be expected to have a camera for tasks such as face recognition, so it makes sense to also use the camera for navigation. Cameras have advantages over other sensors such as colour information (not available with any other sensor), better immunity to noise (compared to sonar), and not being restricted to operating in a plane (like laser range finders). However, there are disadvantages too, with the principal one being the effect of perspective. This research investigated ways to use a single colour camera as a range sensor to guide an autonomous robot and allow it to build a map of its environment, a process referred to as Simultaneous Localization and Mapping (SLAM). An experimental system was built using a robot controlled via a wireless network connection. Using the on-board camera as the only sensor, the robot successfully explored and mapped indoor office environments. The quality of the resulting maps is comparable to those that have been reported in the literature for sonar or infra-red sensors. Although the maps are not as accurate as ones created with a laser range finder, the solution using a camera is significantly cheaper and is more appropriate for toys and early domestic robots.
Resumo:
In a typical large office block, by far the largest lifetime expense is the salaries of the workers - 84% for salaries compared with : office rent (14%), total energy (1%), and maintenance (1%). The key drive for business is therefore the maximisation of the productivity of the employees as this is the largest cost. Reducing total energy use by 50% will not produce the same financial return as 1% productivity improvement? The aim of the project which led to this review of the literature was to understand as far as possible the state of knowledge internationally about how the indoor environment of buildings does influence occupants and the impact this influence may have on the total cost of ownership of buildings. Therefore one of the main focus areas for the literature has been identifying whether there is a link between productivity and health of building occupants and the indoor environment. Productivity is both easy to define - the ratio of output to input - but at the same time very hard to measure in a relatively small environment where individual contributions can influence the results, in particular social interactions. Health impacts from a building environment are also difficult to measure well, as establishing casual links between the indoor environment and a particular health issue can be very difficult. All of those issues are canvassed in the literature reported here. Humans are surprisingly adaptive to different physical environments, but the workplace should not test the limits of human adaptability. Physiological models of stress, for example, accept that the body has a finite amount of adaptive energy available to cope with stress. The importance of, and this projects' focus on, the physical setting within the integrated system of high performance workplaces, means this literature survey explores research which has been undertaken on both physical and social aspects of the built environment. The literature has been largely classified in several different ways, according to the classification scheme shown below. There is still some inconsistency in the use of keywords, which is being addressed and greater uniformity will be developed for a CD version of this literature, enabling searching using this classification scheme.
Resumo:
This report is for one of the four Tasks of the CRC project ‘Regenerating Construction to Enhance Sustainability’. The report specifically addresses Task 2 ‘Design guidelines for delivering high quality indoor environments’.
Resumo:
The indoor air quality (IAQ) in buildings is currently assessed by measurement of pollutants during building operation for comparison with air quality standards. Current practice at the design stage tries to minimise potential indoor air quality impacts of new building materials and contents by selecting low-emission materials. However low-emission materials are not always available, and even when used the aggregated pollutant concentrations from such materials are generally overlooked. This paper presents an innovative tool for estimating indoor air pollutant concentrations at the design stage, based on emissions over time from large area building materials, furniture and office equipment. The estimator considers volatile organic compounds, formaldehyde and airborne particles from indoor materials and office equipment and the contribution of outdoor urban air pollutants affected by urban location and ventilation system filtration. The estimated pollutants are for a single, fully mixed and ventilated zone in an office building with acceptable levels derived from Australian and international health-based standards. The model acquires its dimensional data for the indoor spaces from a 3D CAD model via IFC files and the emission data from a building products/contents emissions database. This paper describes the underlying approach to estimating indoor air quality and discusses the benefits of such an approach for designers and the occupants of buildings.