306 resultados para indomethacin
Resumo:
Indomethacin administration in animals increases permeability of the small intestine, leading to inflammation that mimics Crohn`s disease. Nonsteroidal anti-inflammatory drugs increase the permeability of the intestinal epithelial barrier and should therefore be used with caution in patients with Crohn`s disease. We analyzed the protective effects of octreotide and the tumor necrosis factor-alpha inhibitor infliximab in a rat model of indomethacin-induced enterocolitis. Male Wistar rats received 20 mg of infliximab or 10 mu g of octreotide 24 h prior to injection with indomethacin. Intestinal permeability was analyzed using Cr-51-ethylenediaminetetraacetic acid clearance. No microscopic or macroscopic alterations were observed in the rats receiving infliximab or octreotide, both of which increased permeability (P < 0.001 versus controls). Our macroscopic and microscopic findings might be related to the low specificity of infliximab and suggest that cytokines affect the intestinal epithelial barrier, as evidenced by the protective effect that infliximab had on the permeability parameters evaluated.
Resumo:
Aim: To evaluate the effect of inhibiting inducible nitric oxide synthase (iNOS), by aminoguanidine, or leukocyte infiltration, by fucoidin, on gastropathy induced by two different doses of indomethacin in rats. Methods: Rats were treated with saline, aminoguanidine (50 or 100 mg.kg(-1), i. p.) or fucoidin (25 mg.kg(-1), i. v.). Indomethacin was then given at a dose of 5 or 20 mg.kg(-1). At the end of 3 h, macroscopic gastric damage and myeloperoxidase (MPO) activity were assessed. Results: Aminoguanidine reduced the gastric damage induced by indomethacin at 20 mg.kg(-1), but increased gastric MPO activity. However, aminoguanidine did not influence the gastric damage induced by indomethacin at 5 mg.kg(-1). Fucoidin prevented both the gastric damage and the increase in gastric MPO activity induced by indomethacin at 20 mg. kg(-1), but not at 5 mg.kg(-1). Conclusion: Indomethacin at a dose of 20 mg.kg(-1), but not at 5 mg.kg(-1), induced gastropathy dependent on neutrophil infiltration and iNOS-generated NO.
Resumo:
To investigate the role of non-protein sulfhydryl groups (NP-SH) and leukocyte adhesion in the protective effect of lipopolysaccharide (LPS) from Escherichia coli against indomethacin-induced gastropathy. Male Wistar rats were divided into four groups: saline, LPS, saline + indomethacin and LPS + indomethacin, with six rats in each group. Rats were pretreated with LPS (300 mu g/kg, by intravenous) or saline. After 6 h, indomethacin was administered (20 mg/kg, by gavage). Three hours after treatments, rats were killed. Macroscopic gastric damage, gastric NP-SH concentration, myeloperoxidase (MPO) activity and mesenteric leukocyte adhesion (intravital microscopy) were assessed. Statistical analysis was performed using one-way analysis of variance followed by the Newman-Keuls test. Statistical significance was set at P < 0.05. LPS reduced the gastric damage, gastric MPO activity and increased gastric NP-SH concentration in indomethacin-induced gastropathy. LPS alone increased gastric NP-SH when compared to saline. Indomethacin increased leukocyte adhesion when compared to the saline, and LPS reduced indomethacin-induced leukocyte adhesion. In addition, LPS alone did not change leukocyte adhesion, when compared to the saline. LPS protective effect against indomethacin-induced gastropathy is mediated by an increase in the NP-SH and a decrease in leukocyte-endothelial adhesion.
Resumo:
Using 49 prostatectomized patients as experimental subjects, we studied the effects of Inclometnacin and acetylsalicylic acid — accredited prostaglandin synthetase inhibitors — from a urodynamic and clinical standpoint. Relevant urodynamic data was gathered 1 hr 30 mi after the patients had taken the drugs and placebo. Clinical results were further scrutinized after 8 days of treatment, at which time a new urodynamic workup was again performed on some patients. Results were again studied shortly after the end of treatment. The effect of the drugs on bladder and urethral structures was borne out by clear-ct!t clinical and urodynamic changes. After statistically analyzing such changes, we concluded that prostaglandin synthesis inhibition resulting in the inhibition of prostaglandin action had, at least in part, led to the changes noted. In the present report we shall discuss the role played by the highly complex mechanisms at work.
Resumo:
BACKGROUND: Non-steroidal anti-inflammatory drugs are known to promote sodium retention and to blunt the blood pressure lowering effects of several classes of antihypertensive agents including beta-blockers, diuretics and angiotensin converting enzyme (ACE) inhibitors. The purpose of the present study was to investigate the acute and sustained effects of indomethacin on the renal response to the angiotensin II receptor antagonist valsartan and to the ACE inhibitor enalapril. METHODS: Twenty normotensive subjects maintained on fixed sodium intake (100 mmol sodium/day) were randomized to receive for one week: valsartan 80 mg o.d., enalapril 20 mg o.d., valsartan 80 mg o.d. + indomethacin 50 mg bid and enalapril 20 mg o.d. + indomethacin 50 mg bid. This single-blind study was designed as a parallel (valsartan vs. enalapril) and cross-over trial (valsartan or enalapril vs. valsartan + indomethacin or enalapril + indomethacin). Renal hemodynamics and urinary electrolyte excretion were measured for six hours after the first and seventh administration of each treatment regimen. RESULTS: The results show that valsartan and enalapril have comparable renal effects characterized by no change in glomerular filtration rate and significant increases in renal plasma flow and sodium excretion. The valsartan- and enalapril-induced renal vasodilation is not significantly blunted by indomethacin. However, indomethacin similarly abolishes the natriuresis induced by the angiotensin II antagonist and the ACE inhibitor. CONCLUSIONS: This observation suggests that although angiotensin receptor antagonists do not affect prostaglandin metabolism, the administration of a non-steroidal anti-inflammatory drug blunts the natriuretic response to angiotensin receptor blockade.
Resumo:
BACKGROUND: Indomethacin therapy for closure of a patent ductus arteriosus in preterm neonates is responsible for transient renal insufficiency. Dopamine theoretically reduces the renal side effects of indomethacin therapy. PATIENTS: 33 neonates with a mean gestational age of 28.5 weeks who received indomethacin for treatment of a symptomatic PDA were included in a prospective randomized controlled clinical study. METHOD: 15 patients were treated with indomethacin alone (control group), 18 patients with indomethacin and dopamine (study group). Indomethacin was given in a dose of 0.2 mg/kg/dose intravenously, all patients received three doses with intervall of 12 hours. The dose of dopamine was in all patients 4 micrograms/kg per minute commencing 2 hours prior to the first dose of indomethacin and continuing for 12 hours after the third dose. RESULTS: Indomethacin induced a significant increase in serum creatinin (76.3 mumol/l vs 99.7 mumol/l for the control group, and 70.7 mumol/l vs 93.0 mumol/l for the study group), and weight (1259 g vs 1316 g for the control group, and 1187 g vs 1221 g for the study group). The increase systolic blood pressure (61 mmHg vs 65.7 mmHg) in the study group was significant (p < 0.05) but remained unchanged in the control group. The changes between the study group and the control group were not significant either in serum creatinin, fractional excretion of sodium, or weight gain. The failure rate of ductal closure was not different between the two groups. CONCLUSION: The additional use of dopamine does not reduce the renal side effects of indomethacin.
Effect of indomethacin on the renal response to angiotensin II receptor blockade in healthy subjects
Resumo:
Extended Hildebrand Solubility Approach (EHSA) was successfully applied to evaluate the solubility of Indomethacin in 1,4-dioxane + water mixtures at 298.15 K. An acceptable correlation-performance of EHSA was found by using a regular polynomial model in order four of the W interaction parameter vs. solubility parameter of the mixtures (overall deviation was 8.9%). Although the mean deviation obtained was similar to that obtained directly by means of an empiric regression of the experimental solubility vs. mixtures solubility parameters, the advantages of EHSA are evident because it requires physicochemical properties easily available for drugs.
Resumo:
Gastric antral dysmotility has been implicated in the pathogenesis of indomethacin-induced gastric damage, but the relationship between gastric motor abnormalities and mucosal lesions has not been extensively studied. We investigated whether changes in gastric tone and gastric retention correlate with mucosal lesions and neutrophil migration in indomethacin-induced gastric damage in rats. Indomethacin, either 5 or 20 mg/kg (INDO-5 and INDO-20), was instilled into the stomach, and then gastric damage, neutrophil migration, gastric tone and gastric retention were assessed 1 or 3 h later. Gastric damage was calculated as the sum of the lengths of all mucosal lesions, and neutrophil migration was measured by assaying myeloperoxidase activity. Gastric tone was determined by a plethysmometric method, and gastric retention of either saline or Sustacal® was evaluated by a scintigraphic method. Gastric damage was detectable 3 h after either INDO-5 or INDO-20, but not after 1 h. Neutrophil migration was significantly higher 3 h after INDO-20 as compared with INDO-5 or control group, but not after 1 h. Values of gastric tone 1 and 3 h after either INDO-5 (1 h = 1.73 ± 0.07 ml; 3 h = 1.87 ± 0.03 ml) or INDO-20 (1 h = 1.70 ± 0.02 ml; 3 h = 1.79 ± 0.03 ml) were significantly lower than in controls (1 h = 1.48 ± 0.05 ml; 3 h = 1.60 ± 0.06 ml). Gastric retention of saline was higher 1 h after INDO-5 (58.9 ± 3.3%) or INDO-20 (56.1 ± 3.1%) compared to control (45.5 ± 1.7%), but not after 3 h. There were no differences concerning gastric retention of Sustacal® between the various groups. Indomethacin induced decreased gastric tone and delayed gastric emptying, which precede mucosal lesion and neutrophil infiltration. These results indicate that there is no relationship between these gastric motor abnormalities and mucosal lesion in indomethacin-induced gastropathy.
Resumo:
We investigated the effect of etoricoxib, a selective cyclooxygenase-2 inhibitor, and indomethacin, a non-selective cyclooxygenase inhibitor, on experimental periodontitis, and compared their gastrointestinal side effects. A ligature was placed around the second upper left molars of female Wistar rats (160 to 200 g). Animals (6 per group) were treated daily with oral doses of 3 or 9 mg/kg etoricoxib, 5 mg/kg indomethacin, or 0.2 mL saline, starting 5 days after the induction of periodontitis, when bone resorption was detected, until the sacrifice on the 11th day. The weight and survival rate were monitored. Alveolar bone loss (ABL) was measured as the sum of distances between the cusp tips and the alveolar bone. The gastric mucosa was examined macroscopically and the periodontium and gastric and intestinal mucosa were examined by histopathology. The ongoing ABL was significantly inhibited (P < 0.05) by 3 and 9 mg/kg etoricoxib and by indomethacin: control = 4.08 ± 0.47 mm; etoricoxib (3 mg/kg) = 1.89 ± 0.26 mm; etoricoxib (9 mg/kg) = 1.02 ± 0.14 mm; indomethacin = 0.64 ± 0.15 mm. Histopathology of periodontium showed that etoricoxib and indomethacin reduced inflammatory cell infiltration, ABL, and cementum and collagen fiber destruction. Macroscopic and histopathological analysis of gastric and intestinal mucosa demonstrated that etoricoxib induces less damage than indomethacin. Animals that received indomethacin presented weight loss starting on the 7th day, and higher mortality rate (58.3%) compared to etoricoxib (0%). Treatment with etoricoxib, even starting when ABL is detected, reduces inflammation and cementum and bone resorption, with fewer gastrointestinal side effects.
Resumo:
The amplification of pain long after the initial stimulus may be avoided if the treatment of pain is introduced before its initiation. However, conflicting evidence exists about the efficacy of such preemptive analgesia for the management of postoperative pain. This study compares the efficacy of intraplantar administration of indomethacin (a non-selective inhibitor of cyclooxygenase) and MK886 (an inhibitor of 5-lipoxygenase-activating protein), separately or in combination to produce preemptive analgesia in a model of surgical incisional pain in male Wistar rats. All incised rats (5 to 6 rats per group) had allodynia at 2, 6, and 24 h after surgery as evaluated using von Frey filaments. MK886, but not indomethacin (50 to 200 µg/paw), reduced the allodynia when injected either 1 h before or 1 h after surgery. The effect of preoperative MK886 (160 µg/paw) against incisional allodynia had a magnitude apparently similar to that produced by postoperative MK886. Pre-, but not postoperative MK886 (80 µg/paw) reduced the allodynia but the effect was seen only at 6 h after surgery. In contrast, MK886 (40 µg/paw) intensified the allodynia observed 2 h after the incision either injected before or after surgery. MK886 or indomethacin alone did not provide preemptive analgesia in the model of incisional pain. In contrast, the combination of MK886 with indomethacin reduced the allodynia more effectively when used before than after surgery, thus fulfilling the criteria for preemptive analgesia. In conclusion, preoperative inhibition of the local generation of both prostaglandins and leukotrienes by surgical incision may be an alternative to provide preemptive analgesia.
Resumo:
An X-ray amorphous mixture of carbamazepine and indomethacin transforms upon annealing to produce a novel 1:1 cocrystal, whose structure has been determined from laboratory powder X-ray diffraction (PXRD) data.
Resumo:
An X-ray amorphous mixture of carbamazepine and indomethacin transforms upon annealing to produce a novel 1 : 1 cocrystal, whose structure has been determined from laboratory powder X-ray diffraction (PXRD) data
Resumo:
[Ru-2(dNSAID)(4)Cl] and novel [Ru-2(dNSAID)(4)(H2O)(2)]PF6 complexes, where dNSAID = deprotonated carboxylate from the non-steroidal anti-inflammatory drugs (NSIDs), respectively: ibuprofen, Hibp (1) and aspirin, Hasp (2); naproxen, Hnpx (3) and indomethacin, Hind (4), have been prepared and characterized by optical spectroscopic methods. All of the compounds exhibit mixed valent Ru-2(II, III) cores where metal-metal bonds are stabilized by four drug-carboxylate bridging ligands in paddlewheel type structures. The diruthenium complexes and their parent NSAIDs showed no significant effects for Hep2 human larynx or T24/83 human bladder tumor. In contrast, the coordination of Ru-2(II,III) core led to synergistic effects that increased significantly the inhibition of C6 rat glioma proliferation in relation to the organic NSAIDs naproxen and ibuprofen, The possibility that the complexes Ru-2-ibp and Ru-2-npx may exert effects (anti-angiogenic and anti-matrix metalloprotease) that are similar to those exhibited by NAMI-A opens new horizons for in vivo C6 glioma model studies. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Renal changes determined by Lys49 myotoxin I (BmTx I), isolated from Bothrops moojeni are well known. The scope of the present study was to investigate the possible mechanisms involved in the production of these effects by using indomethacin (10 mu g/mL), a non-selective inhibitor of cyclooxygenase, and tezosentan (10 mu g/mL), an endothelin antagonist. By means of the method of mesenteric vascular bed, it has been observed that B. moojeni myotoxin (5 mu g/mL) affects neither basal perfusion pressure nor phenylephrine-preconstricted vessels. This fact suggests that the increase in renal perfusion pressure and in renal vascular resistance did not occur by a direct effect on renal vasculature. Isolated kidneys from Wistar rats, weighing 240-280 g, were perfused with Krebs-Henseleit solution. The infusion of BmTx-I increased perfusion pressure, renal vascular resistance, urinary flow and glomerular filtration rate. Sodium, potassium and chloride tubular transport was reduced after addition of BmTx-I. Indomethacin blocked the effects induced by BmTx-I on perfusion pressure and renal vascular resistance, however, it did not revert the effect on urinary flow and sodium, potassium and chloride tubular transport. The alterations of glomerular filtration rate were inhibited only at 90 min of perfusion. The partial blockade exerted by indomethacin treatment showed that prostaglandins could have been important mediators of BmTx-I renal effects, but the participation of other substances cannot be excluded.The blockage of all renal alterations observed after tezosentan treatment support the hypothesis that endothelin is the major substance involved in the renal pathophysiologic alterations promoted by the Lys49 PLA(2) myotoxin I, isolated from B. moojeni. In conclusion, the rather intense renal effects promoted by B. moojeni myotoxin-I were probably caused by the release of renal endothelin, interfering with the renal parameters studied. (c) 2006 Elsevier Ltd. All rights reserved.