998 resultados para indirizzo :: 122 :: Materiali


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In questa tesi sono stati studiati i dati presenti in letteratura sugli gli effetti benefici sulla vita a fatica della lega Ti6Al4V del processo di pallinatura,con particolare interesse agli effetti sul processo della dimensione dei pallini e della durata del processo. Inoltre si sono analizzati i dati di letteratura riguardanti l'incremento di vita a fatica della lega Ti6Al4V ottenuto tramite il processo di ripallinatura e la relazione tra pallinatura,ripallinatura e fretting fatigue. Infine sono stati esaminati i dati sul comportamento a fatica della lega Ti6Al4V grado ELI per uso biomedico sottoposta a carico oligociclico ed ad alto numero di cicli.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La prima parte del lavoro è stata dedicata a definire il contesto legislativo in cui si colloca la pianificazione d’emergenza per il trasporto di sostanze pericolose. Dopo una breve introduzione riguardante le direttive Seveso ed il loro recepimento in Italia e in Belgio, è stato effettuato un confronto tra le normative dei due Paesi, con specifico riferimento all’aspetto della pianificazione d’emergenza. Successivamente si è messa in luce l’attualità del tema degli incidenti che hanno origine durante la fase del trasporto delle sostanze pericolose, sia analizzando alcuni verificatisi negli ultimi anni in Europa, sia descrivendo le norme che regolamentano il trasporto di questa tipologia di merci. Tali norme non forniscono informazioni per gestire una situazione d’emergenza che potrebbe verificarsi durante il trasporto e non impongono la predisposizione di piani d’emergenza specifici per quest’attività. E’ proprio alla luce di questa considerazione che, tramite il presente elaborato di tesi, si è voluta mettere in evidenza l’importanza di definire un approccio metodologico a carattere generale per la pianificazione d’emergenza nel trasporto delle sostanze pericolose. Nello specifico, la metodologia utilizzata in Belgio per la pianificazione d’emergenza nell’intorno degli stabilimenti (che rappresentano delle sorgentidi rischio puntiformi) è stata estesa alle linee di trasporto (che rappresentano delle sorgenti di rischio lineari); la descrizione di questa estensione rappresenta la parte più importante e corposa dell’elaborato. Nella parte finale del lavoro la metodologia per la pianificazione d’emergenza nel trasporto è stata applicata ad un caso di studio reale, costituito da uno stabilimento della Polyol Belgium ; in particolare si sono considerati il percorso stradale e la linea ferroviaria tramite cui le materie prime (sostanze infiammabili e tossiche) arrivano all’azienda. GIANFRANCO PUSTORINO Pagina 2 L’applicazione al caso di studio ha confermato la validità della metodologia proposta. Il lavoro effettuato ha evidenziato come sia necessario colmare la lacuna legislativa che vi è in merito alla valutazione del rischio ed alla pianificazione d’emergenza nel trasporto delle sostanze pericolose ; una legislazione specifica a riguardo ridurrebbesenza dubbio l’impatto degli incidenti durante il trasporto sulla popolazione, sull’ambiente e sui beni materiali.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Il lavoro di tesi, svolto presso l’Istituto di Scienza e Tecnologia dei Materiali Ceramici (ISTEC-CNR, Faenza, RA), ha affrontato la produzione e la caratterizzazione di ceramici a base di boruro di zirconio (ZrB2) con lo scopo di valutare l’efficacia delle fibre corte di carbonio come potenziale rinforzo. Il boruro di zirconio appartiene a una famiglia di materiali noti come UHTC (Ultra-High Temperature Ceramics) caratterizzati da elevato punto di fusione e in grado di mantenere la resistenza meccanica e operare con limitata ossidazione a temperature superiori ai 2000°C. Il principale ostacolo nella produzione dei materiali a base di ZrB2 è il processo di sintesi, infatti, a causa della loro elevata temperatura di fusione, per ottenere un materiale completamente denso è necessario utilizzare processi a temperatura e pressione elevati (T > 2000°C e P > 30 MPa), condizioni che vanno ad influenzare la microstruttura della matrice e delle fibre e di conseguenza le proprietà meccaniche del materiale. L’aggiunta di additivi di sinterizzazione idonei permette di ottenere materiali perfettamente densi anche a temperature e pressioni inferiori. Tuttavia lo ZrB2 non viene ampiamente utilizzato per applicazioni strutturali a causa della sua fragilità, per far fronte alla sua bassa tenacità il materiale viene spesso rinforzato con una fase allungata (whiskers o fibre). È già oggetto di studi l’utilizzo di fibre corte e whiskers di SiC per tenacizzare lo ZrB2, tuttavia la forte interfaccia che viene a crearsi tra fibra e matrice, che non permette il pull-out delle fibre, ci porta a credere che una fibra che non tenda a reagire con la matrice, presentando un’interfaccia più debole, possa portare ad una tenacizzazione più efficace. Per questo scopo sono stati realizzati mediante pressatura a caldo due materiali rinforzati con fibre corte di carbonio: ZrB2 + 5% vol MoSi2 + 8% vol fibre di carbonio e [ZrB2 + 2 % peso C] + 8% vol fibre di carbonio, indicati rispettivamente con Z5M_Cf e Z2C_Cf. Sono stati analizzati e discussi diversi aspetti del materiale rinforzato tra cui: il comportamento di densificazione durante la pressatura a caldo, l’evoluzione della microstruttura della matrice, la distribuzione e la morfologia delle fibre, l’influenza del rinforzo sulle proprietà meccaniche di durezza e tenacità e sulla resistenza all’ossidazione. L’elaborato è strutturato come segue: inizialmente sono state introdotte le caratteristiche generali dei ceramici avanzati tra cui le proprietà, la produzione e le applicazioni; successivamente è stata approfondita la descrizione dei materiali a base di boruro di zirconio, in particolare i processi produttivi e l’influenza degli additivi di sinterizzazione sulla densificazione e sulle proprietà; ci si è poi concentrati sull’effetto di una seconda fase allungata per il rinforzo del composito. Per quanto riguarda la parte sperimentale vengono descritte le principali fasi della preparazione e caratterizzazione dei materiali: le materie prime, disperse in un solvente, sono state miscelate mediante ball-milling, successivamente è stato evaporato il solvente e la polvere ottenuta è stata formata mediante pressatura uniassiale. I campioni, dopo essere stati sinterizzati mediante pressatura uniassiale a caldo, sono stati tagliati e lucidati a specchio per poter osservare la microstruttura. Quest’ultima è stata analizzata al SEM per studiare l’effetto dell’additivo di sinterizzazione (MoSi2 e carbonio) e l’interfaccia tra matrice e fase rinforzante. Per approfondire l’effetto del rinforzo sulle proprietà meccaniche sono state misurate la durezza e la tenacità del composito; infine è stata valutata la resistenza all’ossidazione mediante prove in aria a 1200°C e 1500°C. L’addizione di MoSi2 ha favorito la densificazione a 1800°C mediante formazione di una fase liquida transiente, tuttavia il materiale è caratterizzato da una porosità residua di ~ 7% vol. L’addizione del carbonio ha favorito la densificazione completa a 1900°C grazie alla reazione dall’additivo con gli ossidi superficiali dello ZrB2. La microstruttura delle matrici è piuttosto fine, con una dimensione media dei grani di ~ 2 μm per entrambi i materiali. Nel caso del materiale con Z5M_Cf sono presenti nella matrice particelle di SiC e fasi MoB derivanti dalla reazione dell’additivo con le fibre e con la matrice; invece nel materiale Z2C_Cf sono presenti grani di carbonio allungati tra i bordi grano, residui delle reazioni di densificazione. In entrambi i materiali le fibre sono distribuite omogeneamente e la loro interfaccia con la matrice è fortemente reattiva. Nel caso del materiale Z5M_Cf si è formata una struttura core-shell con lo strato più esterno formato da SiC, formato dalla reazione tra il siliciuro e la fibra di C. Nel caso del materiale Z2C_Cf non si forma una vera e propria interfaccia, ma la fibra risulta fortemente consumata per via dell’alta temperatura di sinterizzazione. I valori di durezza Vickers dei materiali Z5M_Cf e Z2C_Cf sono rispettivamente 11 GPa e 14 GPa, valori inferiori rispetto al valore di riferimento di 23 GPa dello ZrB2, ma giustificati dalla presenza di una fase meno dura: le fibre di carbonio e, nel caso di Z5M_Cf, anche della porosità residua. I valori di tenacità dei materiali Z5M_Cf e Z2C_Cf, misurati con il metodo dell’indentazione, sono rispettivamente 3.06 MPa·m0.5 e 3.19 MPa·m0.5. L’osservazione, per entrambi i materiali, del fenomeno di pull-out della fibra, sulla superficie di frattura, e della deviazione del percorso della cricca, all’interno della fibra di carbonio, lasciano supporre che siano attivi questi meccanismi tenacizzanti a contributo positivo, unitamente al contributo negativo legato allo stress residuo. La resistenza all’ossidazione dei due materiali è confrontabile a 1200°C, mentre dopo esposizione a 1500°C il materiale Z5M_Cf risulta più resistente rispetto al materiale Z2C_Cf grazie alla formazione di uno strato di SiO2 protettivo, che inibisce la diffusione dell’ossigeno all’interno della matrice. Successivamente, sono stati considerati metodi per migliorare la densità finale del materiale e abbassare ulteriormente la temperatura di sinterizzazione in modo da minimizzare la degenerazione della fibra. Da ricerca bibliografica è stato identificato il siliciuro di tantalio (TaSi2) come potenziale candidato. Pertanto è stato prodotto un terzo materiale a base di ZrB2 + Cf contenente una maggiore quantità di siliciuro (10% vol TaSi2) che ha portato ad una densità relativa del 96% a 1750°C. Questo studio ha permesso di approcciare per la prima volta le problematiche legate all’introduzione delle fibre di carbonio nella matrice di ZrB2. Investigazioni future saranno mirate alla termodinamica delle reazioni che hanno luogo in sinterizzazione per poter analizzare in maniera più sistematica la reattività delle fibre nei confronti della matrice e degli additivi. Inoltre riuscendo ad ottenere un materiale completamente denso e con fibre di carbonio poco reagite si potrà valutare la reale efficacia delle fibre di carbonio come possibili fasi tenacizzanti.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Numerosi incidenti verificatisi negli ultimi dieci anni in campo chimico e petrolchimico sono dovuti all’innesco di sostanze infiammabili rilasciate accidentalmente: per questo motivo gli scenari incidentali legati ad incendi esterni rivestono oggigiorno un interesse crescente, in particolar modo nell’industria di processo, in quanto possono essere causa di ingenti danni sia ai lavoratori ed alla popolazione, sia alle strutture. Gli incendi, come mostrato da alcuni studi, sono uno dei più frequenti scenari incidentali nell’industria di processo, secondi solo alla perdita di contenimento di sostanze pericolose. Questi eventi primari possono, a loro volta, determinare eventi secondari, con conseguenze catastrofiche dovute alla propagazione delle fiamme ad apparecchiature e tubazioni non direttamente coinvolte nell’incidente primario; tale fenomeno prende il nome di effetto domino. La necessità di ridurre le probabilità di effetto domino rende la mitigazione delle conseguenze un aspetto fondamentale nella progettazione dell’impianto. A questo scopo si impiegano i materiali per la protezione passiva da fuoco (Passive Fire Protection o PFP); essi sono sistemi isolanti impiegati per proteggere efficacemente apparecchiature e tubazioni industriali da scenari di incendio esterno. L’applicazione dei materiali per PFP limita l’incremento di temperatura degli elementi protetti; questo scopo viene raggiunto tramite l’impiego di differenti tipologie di prodotti e materiali. Tuttavia l’applicazione dei suddetti materiali fireproofing non può prescindere da una caratterizzazione delle proprietà termiche, in particolar modo della conducibilità termica, in condizioni che simulino l’esposizione a fuoco. Nel presente elaborato di tesi si è scelto di analizzare tre materiali coibenti, tutti appartenenti, pur con diversità di composizione e struttura, alla classe dei materiali inorganici fibrosi: Fibercon Silica Needled Blanket 1200, Pyrogel®XT, Rockwool Marine Firebatt 100. I tre materiali sono costituiti da una fase solida inorganica, differente per ciascuno di essi e da una fase gassosa, preponderante come frazione volumetrica. I materiali inorganici fibrosi rivestono una notevole importanza rispetto ad altri materiali fireproofing in quanto possono resistere a temperature estremamente elevate, talvolta superiori a 1000 °C, senza particolari modifiche chimico-fisiche. Questo vantaggio, unito alla versatilità ed alla semplicità di applicazione, li rende leader a livello europeo nei materiali isolanti, con una fetta di mercato pari circa al 60%. Nonostante l’impiego dei suddetti materiali sia ormai una realtà consolidata nell’industria di processo, allo stato attuale sono disponibili pochi studi relativi alle loro proprietà termiche, in particolare in condizioni di fuoco. L’analisi sperimentale svolta ha consentito di identificare e modellare il comportamento termico di tali materiali in caso di esposizione a fuoco, impiegando nei test, a pressione atmosferica, un campo di temperatura compreso tra 20°C e 700°C, di interesse per applicazioni fireproofing. Per lo studio delle caratteristiche e la valutazione delle proprietà termiche dei tre materiali è stata impiegata principalmente la tecnica Transient Plane Source (TPS), che ha consentito la determinazione non solo della conducibilità termica, ma anche della diffusività termica e della capacità termica volumetrica, seppure con un grado di accuratezza inferiore. I test sono stati svolti su scala di laboratorio, creando un set-up sperimentale che integrasse opportunamente lo strumento Hot Disk Thermal Constants Analyzer TPS 1500 con una fornace a camera ed un sistema di acquisizione dati. Sono state realizzate alcune prove preliminari a temperatura ambiente sui tre materiali in esame, per individuare i parametri operativi (dimensione sensori, tempi di acquisizione, etc.) maggiormente idonei alla misura della conducibilità termica. Le informazioni acquisite sono state utilizzate per lo sviluppo di adeguati protocolli sperimentali e per effettuare prove ad alta temperatura. Ulteriori significative informazioni circa la morfologia, la porosità e la densità dei tre materiali sono state ottenute attraverso stereo-microscopia e picnometria a liquido. La porosità, o grado di vuoto, assume nei tre materiali un ruolo fondamentale, in quanto presenta valori compresi tra 85% e 95%, mentre la frazione solida ne costituisce la restante parte. Inoltre i risultati sperimentali hanno consentito di valutare, con prove a temperatura ambiente, l’isotropia rispetto alla trasmissione del calore per la classe di materiali coibenti analizzati, l’effetto della temperatura e della variazione del grado di vuoto (nel caso di materiali che durante l’applicazione possano essere soggetti a fenomeni di “schiacciamento”, ovvero riduzione del grado di vuoto) sulla conducibilità termica effettiva dei tre materiali analizzati. Analoghi risultati, seppure con grado di accuratezza lievemente inferiore, sono stati ottenuti per la diffusività termica e la capacità termica volumetrica. Poiché è nota la densità apparente di ciascun materiale si è scelto di calcolarne anche il calore specifico in funzione della temperatura, di cui si è proposto una correlazione empirica. I risultati sperimentali, concordi per i tre materiali in esame, hanno mostrato un incremento della conducibilità termica con la temperatura, da valori largamente inferiori a 0,1 W/(m∙K) a temperatura ambiente, fino a 0,3÷0,4 W/(m∙K) a 700°C. La sostanziale similitudine delle proprietà termiche tra i tre materiali, appartenenti alla medesima categoria di materiali isolanti, è stata riscontrata anche per la diffusività termica, la capacità termica volumetrica ed il calore specifico. Queste considerazioni hanno giustificato l’applicazione a tutti i tre materiali in esame dei medesimi modelli per descrivere la conducibilità termica effettiva, ritenuta, tra le proprietà fisiche determinate sperimentalmente, la più significativa nel caso di esposizione a fuoco. Lo sviluppo di un modello per la conducibilità termica effettiva si è reso necessario in quanto i risultati sperimentali ottenuti tramite la tecnica Transient Plane Source non forniscono alcuna informazione sui contributi offerti da ciascun meccanismo di scambio termico al termine complessivo e, pertanto, non consentono una facile generalizzazione della proprietà in funzione delle condizioni di impiego del materiale. La conducibilità termica dei materiali coibenti fibrosi e in generale dei materiali bi-fasici tiene infatti conto in un unico valore di vari contributi dipendenti dai diversi meccanismi di scambio termico presenti: conduzione nella fase gassosa e nel solido, irraggiamento nelle superfici delle cavità del solido e, talvolta, convezione; inoltre essa dipende fortemente dalla temperatura e dalla porosità. Pertanto, a partire dal confronto con i risultati sperimentali, tra cui densità e grado di vuoto, l’obiettivo centrale della seconda fase del progetto è stata la scelta, tra i numerosi modelli a disposizione in letteratura per materiali bi-fasici, di cui si è presentata una rassegna, dei più adatti a descrivere la conducibilità termica effettiva nei materiali in esame e nell’intervallo di temperatura di interesse, fornendo al contempo un significato fisico ai contributi apportati al termine complessivo. Inizialmente la scelta è ricaduta su cinque modelli, chiamati comunemente “modelli strutturali di base” (Serie, Parallelo, Maxwell-Eucken 1, Maxwell-Eucken 2, Effective Medium Theory) [1] per la loro semplicità e versatilità di applicazione. Tali modelli, puramente teorici, hanno mostrato al raffronto con i risultati sperimentali numerosi limiti, in particolar modo nella previsione del termine di irraggiamento, ovvero per temperature superiori a 400°C. Pertanto si è deciso di adottare un approccio semi-empirico: è stato applicato il modello di Krischer [2], ovvero una media pesata su un parametro empirico (f, da determinare) dei modelli Serie e Parallelo, precedentemente applicati. Anch’esso si è rivelato non idoneo alla descrizione dei materiali isolanti fibrosi in esame, per ragioni analoghe. Cercando di impiegare modelli caratterizzati da forte fondamento fisico e grado di complessità limitato, la scelta è caduta sui due recenti modelli, proposti rispettivamente da Karamanos, Papadopoulos, Anastasellos [3] e Daryabeigi, Cunnington, Knutson [4] [5]. Entrambi presentavano il vantaggio di essere stati utilizzati con successo per materiali isolanti fibrosi. Inizialmente i due modelli sono stati applicati con i valori dei parametri e le correlazioni proposte dagli Autori. Visti gli incoraggianti risultati, a questo primo approccio è seguita l’ottimizzazione dei parametri e l’applicazione di correlazioni maggiormente idonee ai materiali in esame, che ha mostrato l’efficacia dei modelli proposti da Karamanos, Papadopoulos, Anastasellos e Daryabeigi, Cunnington, Knutson per i tre materiali analizzati. Pertanto l’obiettivo finale del lavoro è stato raggiunto con successo in quanto sono stati applicati modelli di conducibilità termica con forte fondamento fisico e grado di complessità limitato che, con buon accordo ai risultati sperimentali ottenuti, consentono di ricavare equazioni predittive per la stima del comportamento, durante l’esposizione a fuoco, dei materiali fireproofing in esame. Bologna, Luglio 2013 Riferimenti bibliografici: [1] Wang J., Carson J.K., North M.F., Cleland D.J., A new approach to modelling the effective thermal conductivity of heterogeneous materials. International Journal of Heat and Mass Transfer 49 (2006) 3075-3083. [2] Krischer O., Die wissenschaftlichen Grundlagen der Trocknungstechnik (The Scientific Fundamentals of Drying Technology), Springer-Verlag, Berlino, 1963. [3] Karamanos A., Papadopoulos A., Anastasellos D., Heat Transfer phenomena in fibrous insulating materials. (2004) Geolan.gr http://www.geolan.gr/sappek/docs/publications/article_6.pdf Ultimo accesso: 1 Luglio 2013. [4] Daryabeigi K., Cunnington G. R., and Knutson J. R., Combined Heat Transfer in High-Porosity High-Temperature Fibrous Insulation: Theory and Experimental Validation. Journal of Thermophysics and Heat Transfer 25 (2011) 536-546. [5] Daryabeigi K., Cunnington G.R., Knutson J.R., Heat Transfer Modeling for Rigid High-Temperature Fibrous Insulation. Journal of Thermophysics and Heat Transfer. AIAA Early Edition/1 (2012).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

L’uso di materiali compositi nel rinforzo delle strutture in legno sotto l’azione dei carichi, richiede particolare attenzione ad importanti aspetti. Per esempio, è molto importante pianificare il tipo di intervento da realizzare. Infatti esistono varie tecniche per rinforzare elementi lignei usando diversi “layouts” degli FRP, ognuno dei quali può conferire risultati diversi. Come riporta la figura 55 [31], ci possono essere diverse tipologie di applicazione dei rinforzi.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In questo lavoro di tesi sono state evidenziate alcune problematiche relative alle macchine exascale (sistemi che sviluppano un exaflops di Potenza di calcolo) e all'evoluzione dei software che saranno eseguiti su questi sistemi, prendendo in esame principalmente la necessità del loro sviluppo, in quanto indispensabili per lo studio di problemi scientifici e tecnologici di più grandi dimensioni, con particolare attenzione alla Material Science, che è uno dei campi che ha avuto maggiori sviluppi grazie all'utilizzo di supercomputer, ed ad uno dei codici HPC più utilizzati in questo contesto: Quantum ESPRESSO. Dal punto di vista del software sono state presentate le prime misure di efficienza energetica su architettura ibrida grazie al prototipo di cluster EURORA sul software Quantum ESPRESSO. Queste misure sono le prime ad essere state pubblicate nel contesto software per la Material Science e serviranno come baseline per future ottimizzazioni basate sull'efficienza energetica. Nelle macchine exascale infatti uno dei requisiti per l'accesso sarà la capacità di essere energeticamente efficiente, così come oggi è un requisito la scalabilità del codice. Un altro aspetto molto importante, riguardante le macchine exascale, è la riduzione del numero di comunicazioni che riduce il costo energetico dell'algoritmo parallelo, poiché in questi nuovi sistemi costerà di più, da un punto di vista energetico, spostare i dati che calcolarli. Per tale motivo in questo lavoro sono state esposte una strategia, e la relativa implementazione, per aumentare la località dei dati in uno degli algoritmi più dispendiosi, dal punto di vista computazionale, in Quantum ESPRESSO: Fast Fourier Transform (FFT). Per portare i software attuali su una macchina exascale bisogna iniziare a testare la robustezza di tali software e i loro workflow su test case che stressino al massimo le macchine attualmente a disposizione. In questa tesi per testare il flusso di lavoro di Quantum ESPRESSO e WanT, un software per calcolo di trasporto, è stato caratterizzato un sistema scientificamente rilevante costituito da un cristallo di PDI - FCN2 che viene utilizzato per la costruzione di transistor organici OFET. Infine è stato simulato un dispositivo ideale costituito da due elettrodi in oro con al centro una singola molecola organica.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

L'obiettivo di questo lavoro di tesi è stato studiare le caratteristiche, le proprietà, le applicazioni con conseguenti vantaggi e svantaggi di un particolare tipo di smart materials: i materiali a memoria di forma. Il capitolo 1 tratterà delle leghe metalliche a memoria di forma, il successivo si concentrerà invece sui polimeri a memoria di forma. In ognuno di questi, relativamente al materiale affrontato, si presterà particolare attenzione agli “effetti” che contraddistinguono tali materiali da quelli più comuni, come l’effetto memoria di forma o la superelasticità. Successivamente, nei vari sottoparagrafi, l’attenzione si sposterà sulle tecniche di caratterizzazione, utili per capire le proprietà di una lega o di un polimero rispetto ad un altro, e sulle conseguenti classificazioni di entrambi. Per quanto riguarda i polimeri, si accenneranno certi parametri fondamentali di cui è necessario tener conto per conoscere bene il polimero considerato. La trattazione, in ambedue i casi, terminerà con un focus sulle applicazioni più diffuse e su quelle più interessanti di tali materiali, fornendo dettagli sulle tecnologie utilizzate e sugli stimoli dettati per eccitare i sistemi.