979 resultados para indirect image orientation
Resumo:
The aim of this paper is to present a photogrammetric method for determining the dimensions of flat surfaces, such as billboards, based on a single digital image. A mathematical model was adapted to generate linear equations for vertical and horizontal lines in the object space. These lines are identified and measured in the image and the rotation matrix is computed using an indirect method. The distance between the camera and the surface is measured using a lasermeter, providing the coordinates of the camera perspective center. Eccentricity of the lasermeter center related to the camera perspective center is modeled by three translations, which are computed using a calibration procedure. Some experiments were performed to test the proposed method and the achieved results are within a relative error of about 1 percent in areas and distances in the object space. This accuracy fulfills the requirements of the intended applications. © 2005 American Society for Photogrammetry and Remote Sensing.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Image orientation is a basic problem in Digital Photogrammetry. While interior and relative orientations were succesfully automated, the same can not be said about absolute orientation. This process can be automated by using an approach based on relational matching and a heuristic that uses the analytical relation between straight features in the object space and its homologous in the image space. A build-in self-diagnosis is also used in this method, that is based on the implementation of data snooping statistic test in the process of spatial resection, using the Iterated Extended Kalman Filtering (IEKF). The aim of this paper is to present the basic principles of the proposed approach and results based on real data.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Mosaicing is a technique that allows obtaining a large high resolution image by stitching several images together. These base images are usually acquired from an elevated point of view. Until recently, low-altitude image acquisition has been performed typically by using using airplanes, as well as other manned platforms. However, mini unmanned aerial vehicles (MUAV) endowed with a camera have lately made this task more available for small for cicil applications, for example for small farmers in order to obtain accurate agronomic information about their crop fields. The stitching orientation, or the image acquisition orientation usually coincides with the aircraft heading assuming a downwards orientation of the camera. In this paper, the efect of the image orientation in the eficiency of the aerial coverage path planning is studied. Moreover, an algorithm to compute an optimal stitching orientation angle is proposed and results are numerically compared with classical approaches.
Resumo:
Skew correction of complex document images is a difficult task. We propose an edge-based connected component approach for robust skew correction of documents with complex layout and content. The algorithm essentially consists of two steps - an 'initialization' step to determine the image orientation from the centroids of the connected components and a 'search' step to find the actual skew of the image. During initialization, we choose two different sets of points regularly spaced across the the image, one from the left to right and the other from top to bottom. The image orientation is determined from the slope between the two succesive nearest neighbors of each of the points in the chosen set. The search step finds succesive nearest neighbors that satisfy the parameters obtained in the initialization step. The final skew is determined from the slopes obtained in the 'search' step. Unlike other connected component based methods, the proposed method does not require any binarization step that generally precedes connected component analysis. The method works well for scanned documents with complex layout of any skew with a precision of 0.5 degrees.
Resumo:
The ability to detect faces in images is of critical ecological significance. It is a pre-requisite for other important face perception tasks such as person identification, gender classification and affect analysis. Here we address the question of how the visual system classifies images into face and non-face patterns. We focus on face detection in impoverished images, which allow us to explore information thresholds required for different levels of performance. Our experimental results provide lower bounds on image resolution needed for reliable discrimination between face and non-face patterns and help characterize the nature of facial representations used by the visual system under degraded viewing conditions. Specifically, they enable an evaluation of the contribution of luminance contrast, image orientation and local context on face-detection performance.
Resumo:
In the fields of Machine Vision and Photogrammetry, extracted straight lines from digital images can be used either as vector elements of a digital representation or as control entities that allow the determination of the camera interior and exterior orientation parameters. Applications related with image orientation require feature extraction with subpixel precision, to guarantee the reliability of the estimated parameters. This paper presents three approaches for straight line extraction with subpixel precision. The first approach considers the subpixel refinement based on the weighted average of subpixel positions calculated on the direction perpendicular to the segmented straight line. In the second approach, a parabolic function is adjusted to the grey level profile of neighboring pixels in a perpendicular direction to the segmented line, followed by an interpolation of this model to estimate subpixel coordinates of the line center. In the third approach, the subpixel refinement is performed with a parabolic surface adjustment to the grey level values of neighboring pixels around the segmented line. The intersection of this surface with a normal plane to the line direction generates a parabolic equation that allows estimating the subpixel coordinates of the point in the straight line, assuming that this is the critical point of this function. Three experiments with real images were made and the approach based on parabolic surface adjustment has presented better results.
Resumo:
In this paper is proposed a methodology for semiautomatic CBERS image orientation using roads as ground control. It is based on an iterative strategy involving three steps. In the first step, an operator identifies on the image the ground control roads and supplies along them a few seed points, which could be sparsely and coarsely distributed. These seed points are used by the dynamic programming algorithm for extracting the ground control roads from the image. In the second step, it is established the correspondences between points describing the ground control roads and the corresponding ones extracted from the image. In the last step, the corresponding points are used to orient the CBERS image by using the DLT (Direct Linear Transformation). The two last steps are iterated until the convergence of the orientation process is verified. Experimental results showed that the proposed methodology was efficient with several test images. In all cases the orientation process converged. Moreover, the estimated orientation parameters allowed the registration of check roads with pixel accuracy or better.
Resumo:
The aim of this paper is to present a model for orientation of pushbroom sensors that allows estimating the polynomial coefficients describing the trajectory of the platform, using linear features as ground control. Considering that pushbroom image acquisition is not instantaneous, six EOP (Exterior Orientation Parameters) for each scanned line must be estimated. The sensor position and attitude parameters are modeled with a time dependent polynomial. The relationship between object and image space is established through a mathematical model based on the equivalence between the vector normal to the projection plane in the image space and to the vector normal to the rotated projection plane in the object space. The equivalence property between planes was adapted to consider the pushbroom geometry. Some experiments with simulated data corresponding to CBERS scene (China-Brazil Earth Resource Satellite) were accomplished in order to test the developed model using straight lines. Moreover, experiments with points ground with the model based on collinearity equations adapted to the pushbroom geometry were also accomplished. The obtained results showed that the proposed model can be used to estimate the EOP of pushbroom images with suitable accuracy.
Resumo:
Image acquisition systems based on multi-head arrangement of digital camerasare attractive alternatives enabling a larger imaging area when compared to a single framecamera. The calibration of this kind of system can be performed in several steps or byusing simultaneous bundle adjustment with relative orientation stability constraints. Thepaper will address the details of the steps of the proposed approach for system calibration,image rectification, registration and fusion. Experiments with terrestrial and aerial imagesacquired with two Fuji FinePix S3Pro cameras were performed. The experiments focusedon the assessment of the results of self-calibrating bundle adjustment with and withoutrelative orientation constraints and the effects to the registration and fusion when generatingvirtual images. The experiments have shown that the images can be accurately rectified andregistered with the proposed approach, achieving residuals smaller than one pixel. © 2013 by the authors; licensee MDPI, Basel, Switzerland.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Ciências Cartográficas - FCT