553 resultados para inbreeding depression
Resumo:
Inbreeding depression is one of the hypotheses explaining the maintenance of females within gynodioecious plant populations. However, the measurement of fitness components in selfed and outcrossed progeny depends on life-cycle stage and the history of inbreeding. Comparative data indicate that strong inbreeding depression is more likely to occur at later life-cycle stages. We used hermaphrodite individuals of Silene vulgaris originating from three populations located in different valleys in the Swiss Alps to investigate the effect of two generations of self- and cross-fertilization on fitness components among successive stages of the life cycle in a glasshouse experiment. We detected significant inbreeding depression for most life-cycle stages including: the number of viable and aborted seeds per fruit, probability of germination, above ground biomass, probability of flowering, number of flowers per plant, flower size and pollen viability. Overall, the intensity of inbreeding depression increased among successive stages of the life cycle and cumulative inbreeding depression was significantly stronger in the first generation (delta approximately 0.5) compared with the second generation (delta approximately 0.35). We found no evidence for synergistic epistasis in our experiment. Our finding of more intense inbreeding depression during later stages of the life cycle may help to explain the maintenance of females in gynodioecious populations of S. vulgaris because purging of genetic load is less likely to occur.
Resumo:
Inbreeding depression is one of the main forces opposing the evolution of self-fertilization. Of central importance is the hypothesis that inbreeding depression and selfing coevolve antagonistically, generating either low selfing rate and high inbreeding depression or vice versa. However, there is limited evidence for this coevolution within species. We investigated this topic in the hermaphroditic snail Physa acuta. In this species, isolated individuals delay the onset of egg laying compared to individuals having access to mates. Longer delays (''waiting times'') indicate more intense selfing avoidance. We measured inbreeding depression and waiting time in a large quantitative-genetic experiment (281 outbred families derived from 26 natural populations). We observed large genetic variance for both traits and a strong positive genetic covariance between them, most of which resided within rather than among populations. It means that, within populations, individuals with higher mutation load avoided selfing more strongly on average. This genetic covariance may result from pleiotropy and/or linkage disequilibrium. Whatever its genetic architecture, the fact it emerges specifically when individuals are deprived of mates suggests it is not fortuitous and rather reflects the action of natural selection. We conclude that a diversity of mating strategies can arise within populations subjected to variation in inbreeding depression.
Resumo:
Summary Gynodioecy, the joint occurrence of females and hermaphrodites within natural populations, is a widely studied mating system ever since Darwin (1877). It is an exceptional mating system because continuous selection is necessary to maintain it. Since females only reproduce through ovules whereas hermaphrodites transmit genes through ovules and pollen, larger female fitness, in terms of seed output, is required to allow their maintenance. Two non-exclusive mechanisms can account for the maintenance of females. First, as females do not produce pollen they can reallocate their resources towards a higher ovule production. Second, hermaphrodites can self- and cross-fertilize whereas females are obligate outcrossers. Thus hermaphrodites should partly suffer from inbreeding depression (i.e.: the fitness decline of inbred relative to outbred individuals) and thereby produce less fit progeny than females. This thesis investigated the effects of self- and cross-fertilization of heimaphrodites over two consecutive generations. Inbreeding depression increased across the successive stages of the life- cycle (i.e.: from "seed traits" to "reproductive traits") displaying large inbreeding depression estimates (up to 0.76). This investigation not only detected large inbreeding depression estimates but also detected mechanisms involved in the maintenance of inbreeding depression. For instance cryptic self-incompatibility which is here a larger in vivo pollen performance of distant pollen compared to self-pollen; the expression of inbreeding depression especially in late life-cycle stages, and the appearance of females in the progeny of selfed hermaphrodites. The female biased sex ratio in the progeny of selfed hermaphrodites was a surprising result and could either come from the sex determining mechanisms (complex nucleo-cytoplasmic interaction(s)) and/or from inbreeding depression. Indeed, we not only got females and hermaphrodites but also partial male-sterile (PMS) individuals (i.e.: individuals with differing number of viable stamens). We detected that inbred pollen bearing plants (excluding females) have less viable stamens per flower than outbred plants. A positive correlation was detected between inbreeding depression for the number of viable stamens per flower and the difference in sex ratio between inbred and outbred individuals. A positive relationship was also detected between inbreeding depression for pollen viability and inbreeding depression for number of viable stamens per flower. Each correlation can either account for pleiotropic effects (a major gene acting on the two considered traits) or linkage disequilibrium between genes controlling each of the two related traits. If we hypothesize that these correlations are due to a major gene with pleiotropic effects, the positive relationship between inbreeding depression for number of viable stamens per flower and inbreeding depression for pollen viability showed that deleterious alleles present on a major gene coding for pollen production and viability depressed male fitness within inbred plants. The positive relationship between sex ratio difference between inbred and outbred individuals and inbreeding depression for number of viable stamens per flower indicates that (1) either number of viable stamens per flower is, in addition to inbreeding, also affected by the loci coding for sex determinism or, (2) the presence of females within the progeny of selfed hermaphrodites is a consequence of large inbreeding depression inhibiting pollen production, or (3) sex is here determined by a combination of loci coding for sex expression and inbreeding depression for male reproductive traits. In conclusion, Silene vulgaris has been shown to be a good model for understanding the evolution of mating systems that promote outbreeding. Résumé La gynodïoécie est définie comme étant la présence simultanée d'hermaphrodites et de femelles au sein de populations naturelles d'une même espèce. Ce système de reproduction a toujours fasciné le monde scientifique depuis Darwin, comme en témoigne ses écrits (1876, 1877) sur les systèmes de reproduction chez les plantes. Les femelles ne transmettent leurs gènes qu'à travers leurs ovules alors que les hermaphrodites transmettent leurs gènes à la fois par la voie mâle (le pollen) et la voie femelle (les ovules). La condition pour que la gynodïoécie se maintienne nécessite donc une fitness de la fonction femelle plus élevée chez les femelles que chez les hermaphrodites. Deux mécanismes mutuellement non exclusifs peuvent expliquer le maintien des femelles au sein de ces populations gynodioïques. D'une part, les femelles peuvent réallouer les ressources non utilisées pour la production de pollen et peuvent par conséquent produire plus d'ovules. D'autre part, la reproduction des femelles ne peut se faire que par allo-fécondation alors que les hermaphrodites, peuvent se reproduire à la fois par auto- et allo-fécondation. L'autofécondation s'accompagne en général d'une diminution de fitness de la descendance relativement à la progéniture issue d'allo-fécondation ; ce phénomène est connu sous le nom de dépression de consanguinité. Cette thèse avait pour but de mettre en évidence une éventuelle dépression de consanguinité chez Silene vulgaris, une espèce gynodioïque. Des hermaphrodites, issus de trois vallées alpines, ont été auto- et allo¬fécondés sur deux générations successives. La dépression de consanguinité pouvant s'exprimer à tous les stades de vie d'un individu, plusieurs traits de fitness, allant du nombre de graines par fruit à la production de gamètes ont été mesurés sur différents stades de vie successifs. L'estimation de la dépression de consanguinité totale atteignait des valeurs allant de 0.52 à 0.76 selon la vallée considérée, ce qui indiquerait que les hermaphrodites ont tout intérêt à limiter l'autofécondation et que les femelles ne devraient pas avoir de peine à subsister dans les vallées étudiées. Par la même occasion des mécanismes diminuant la purge potentielle du fardeau génétique, et permettant ainsi le maintien du « niveau » de dépression de consanguinité et par conséquence le maintien de la gynodïoécie ont été mis en évidence. En effet, nos résultats montrent que la dépression de consanguinité s'exprimait tard dans le cycle de vie permettant ainsi à un certain nombre individus consanguins de transmettre leurs allèles délétères à la génération suivante. D'autre part, la croissance in vivo des tubes polliniques d'auto-pollen était plus lente que celle de l'allo-pollen et donc en situation de compétition directe, les ovules devraient plutôt être issus d'allo-fécondation, diminuant ainsi les chances de purges d'allèles délétères. Enfin, l'apparition de femelles dans la progéniture d'hermaphrodites autofécondés diminue aussi les chances de purge d'allèles délétères. Il nous a été impossible de déterminer si l'apparition de femelles dans la descendance d'hermaphrodites autofécondés était due au déterminisme génétique du sexe ou si la différence de sexe ratio entre la descendance auto- et allo-fécondée était due à une éventuelle dépression de consanguinité inhibant la production de pollen. Nous avons observé que S. vulgaris ne présentaient pas uniquement des hermaphrodites et des femelles mais aussi toute sorte d'individus intermédiaires avec un nombre variable d'étamines viables. Nous avons pu mettre' en évidence des corrélations positives entre (1) la différence de sexe ratio (la proportion d'individus produisant du pollen) entre individus consanguins et non consanguins et une estimation de la dépression de consanguinité pour le nombre d'étamines viables d'individus produisant du pollen, ainsi qu'entre (2) la dépression de consanguinité pour le nombre d'étamines viables et celle estimée pour la viabilité du pollen. Chaque corrélation indique soit l'effet d'un (ou plusieurs) gène(s) pléiotropique(s), soit un déséquilibre de liaison entre les gènes. En considérant que ces corrélations sont le résultat d'effet pléiotropiques, la relation entre le nombre d'étamines viables par fleur et la viabilité du pollen, indiquerait un effet négatif de la consanguinité sur la production et la viabilité du pollen due partiellement à un gène majeur. La seconde corrélation indiquerait soit que les gènes responsables de la détermination du sexe agissent aussi sur l'expression de la fonction mâle soit que l'expression du sexe est sujette à la dépression de consanguinité, ou encore un mélange des deux. Aux regards de ces résultats, Silene vulgaris s'est avéré être un bon modèle de compréhension de l'évolution des systèmes de reproduction vers la séparation des sexes.
Resumo:
The objectives of this paper were to derive the genetic variance of inbreeding depression ( ) and to predict the range of inbreeding depression (RID) in cross-pollinated populations. The variance of inbreeding depression is a function of the genetic variances related to dominance effects (, D2, and ), and of the inbreeding coefficients of the two generations in which inbreeding depression is measured (Ft and Fg). The results showed that the higher the level of dominance of a trait, the higher the variance of inbreeding depression. The magnitudes of were expected to be lower in improved (mean gene frequencies = > 0.6) and in unimproved ( < 0.4) populations, than in composite populations ( » 0.5). Data from a maize population used to illustrate the study showed that the range of inbreeding depression in the S¥ generation of selfing was from 48.7% to 85.3% for grain yield, and from 13.9% to 24.5% for plant height. A mating design outlined to estimate the genetic variance of inbreeding depression, the range of inbreeding depression, and of the range of inbred lines is presented.
Resumo:
The endemic pink pigeon has recovered from less than 20 birds in the mid-1970s to 355 free-living individuals in 2003. A major concern for the species' recovery has been the potential genetic problem of inbreeding. Captive pink pigeons bred for reintroduction were managed to maximise founder representation and minimise inbreeding. In this paper, we quantify the effect of inbreeding on survival and reproductive parameters in captive and wild populations and quantify DNA sequence variation in the mitochondrial d-loop region for pink pigeon founders. Inbreeding affected egg fertility, squab, juvenile and adult survival, but effects were strongest in highly inbred birds (F≥0.25). Inbreeding depression was more apparent in free-living birds where even moderate levels of inbreeding affected survival, although highly inbred birds were equally compromised in both captive and wild populations. Mitochondrial DNA haplotypic diversity in pink pigeon founders is low, suggesting that background inbreeding is contributing to low fertility and depressed productivity in this species, as well as comparable survival of some groups of non-inbred and nominally inbred birds. Management of wild populations has boosted population growth and may be required long-term to offset the negative effects of inbreeding depression and enhance the species' survival.
Resumo:
Influences of inbreeding on daily milk yield (DMY), age at first calving (AFC), and calving intervals (CI) were determined on a highly inbred zebu dairy subpopulation of the Guzerat breed. Variance components were estimated using animal models in single-trait analyses. Two approaches were employed to estimate inbreeding depression: using individual increase in inbreeding coefficients or using inbreeding coefficients as possible covariates included in the statistical models. The pedigree file included 9,915 animals, of which 9,055 were inbred, with an average inbreeding coefficient of 15.2%. The maximum inbreeding coefficient observed was 49.45%, and the average inbreeding for the females still in the herd during the analysis was 26.42%. Heritability estimates were 0.27 for DMY and 0.38 for AFC. The genetic variance ratio estimated with the random regression model for CI ranged around 0.10. Increased inbreeding caused poorer performance in DMY, AFC, and CI. However, some of the cows with the highest milk yield were among the highly inbred animals in this subpopulation. Individual increase in inbreeding used as a covariate in the statistical models accounted for inbreeding depression while avoiding overestimation that may result when fitting inbreeding coefficients.
Resumo:
A pollen chase experiment was performed upon three Costa Rican populations of Witheringia solanacea to examine the breakdown of genetically enforced self incompatibility (SI) and the extent of embryonic inbreeding depression. Self-pollen was applied in the bud, with outcross pollen applied one day later, and outcross pollinations at both intervals as a control. A variety of responses were found among the populations. BOHS readily accepted self pollen and suffered from very low inbreeding depression. Monteverde and Las Cruces both have lower fruit set with self-pollination precedence indicating that bud pollinations can overcome the self-incompatibility response and that embryonic death due to inbreeding depression causes fruit failure. The treatment:control fruit set is higher for the Las Cruces plants indicating stronger SI response Self-precedence seeds from the Las Cruces plants are likely to be outcrossed. Self-precedence seeds from Monteverde are likely selfed.
Resumo:
O objetivo do trabalho foi investigar a depressão endogâmica (DE) na mamoneira, espécie de reprodução sexuada mista. de uma população derivada da cultivar Guarani, amostraram-se 60 plantas-mãe. de cada uma foram obtidos três tipos de progênies: de autofecundação (AU), de cruzamentos obrigatórios (CR) e de polinização livre (PL). A produtividade de grãos das progênies for avaliada por meio de experimentos em blocos incompletos em dois locais. Houve forte interação de progênies x locais o que levou a obter estimativas dentro de cada local. Verificou-se ampla variação na depressão endogâmica, com médias de 6,7% e 13,4%, comparando-se as progênies AU com as PL. Verificou-se que a população tem alto potencial para selecionar linhagens promissoras. Foi baixa a freqüência de plantas-mãe gerando progênies com alta capacidade geral de combinação e baixa depressão endogâmica, simultaneamente. Seleção recorrente aumentará a ocorrência de genitoras associando essas duas propriedades, necessárias para obtenção de variedades sintéticas superiores.
Resumo:
The objective of this study was to evaluate the influence of inbreeding depression on traits of buffaloes from Brazil. Specifically, the traits studied were body weight at 205 and 365 days of age, average daily gain from birth to 205 days (ADG_205), average daily gain between 205 and 365 days (ADG205_365) in Mediterranean buffaloes, and milk yield, lactation length, age of first calving and calving intervals in Murrah buffaloes. Inbreeding effects on the traits were determined by fitting four regression models (linear, quadratic, exponential and Michaelis-Menten) about the errors generated by the animal model. The linear model was only significant (P<0.05) for growth traits (exception of ADG205_365). The exponential and Michaelis-Menten models were significant (P<0.01) for all the studied traits while the quadratic model was not significant (P>0.05) for any of the traits. Weight at 205 and 365 days of age decreased 0.25kg and 0.39kg per 1% of increase in inbreeding, respectively. The inbred animals (F=0.25) produced less milk than non-inbred individuals: 50.4kg of milk. Moreover, calving interval increased 0.164 days per 1% of increase in inbreeding. Interestingly, inbreeding had a positive effect on age at first calving and lactation length, decreasing age of first calving and increasing lactation length. © 2012 Japanese Society of Animal Science.
Resumo:
The purpose of this study was to investigate inbreeding depression (DE) in castor bean. From a population derived from the Guarani cultivar, 60 mother plants were sampled. Three types of progenies were obtained from each one: from self-pollination (AU), from crosses (CR) and from open pollination (PL). Grain yield of the progenies was evaluated in two locations. There was a strong interaction of progenies x locations, which led to obtaining estimates within each location. Broad variation was observed in inbreeding depression, with mean values of 6.7% and 13.4%, comparing AU progenies with PL progenies. It was observed that the population has high potential for selecting promising inbred lines. The frequency of mother plants generating progenies with simultaneous high general combination capacity and low inbreeding depression was low. Recurrent selection will increase the occurrence of parent plants associating these two properties, which is necessary for obtaining superior synthetic varieties.
Resumo:
The study of population structure by pedigree analysis is useful to identify important circumstances that affect the genetic history of populations. The intensive use of a small number of superior individuals may reduce the genetic diversity of populations. This situation is very common for the beef cattle breeds. Therefore, the objectives of the present study were to analyze the pedigree and possible inbreeding depression on traits of economic interest in the Marchigiana and Bonsmara breeds and to test the inclusion of the individual inbreeding coefficient (F-i) or individual increases in inbreeding coefficient (Delta F-i) in the genetic evaluation model for the quantification of inbreeding depression. The complete pedigree file of the Marchigiana breed included 29,411 animals born between 1950 and 2003. For the Bonsmara breed, the pedigree file included 18,695 animals born between 1988 and 2006. Only animals with at least 2 equivalent generations of known pedigree were kept in the analyses of inbreeding effect on birth weight, weaning weight measured at about 205 d, and BW at 14 mo in the Marchigiana breed, and on birth weight, weaning weight, and scro-tal circumference measured at 12 mo in the Bonsmara breed. The degree of pedigree knowledge was greater for Marchigiana than for Bonsmara animals. The average generation interval was 7.02 and 3.19 for the Marchigiana and Bonsmara breed, respectively. The average inbreeding coefficient was 1.33% for Marchigiana and 0.26% for Bonsmara. The number of ancestors explaining 50% of the gene pool and effective population size computed via individual increase in coancestry were 13 and 97.79 for Marchigiana and 41 and 54.57 for Bonsmara, respectively. These estimates indicate reduction in genetic variability in both breeds. Inbreeding depression was observed for most of the growth traits. The model including Delta F-i can be considered more adequate to quantify inbreeding depression. The inclusion of F-i or Delta F-i in the genetic evaluation model may not result in better fit to the data. A genetic evaluation with simultaneous estimation of inbreeding depression can be performed in Marchigiana and Bonsmara breeds, providing additional information to producers and breeders.