951 resultados para inactivated vaccine


Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE To analyze the costs of vaccination regimens for introducing inactivated polio vaccine in routine immunization in Brazil.METHODS A cost analysis was conducted for vaccines in five vaccination regimens, including inactivated polio vaccine, compared with the oral polio vaccine-only regimen. The costs of the vaccines were estimated for routine use and for the “National Immunization Days”, during when the oral polio vaccine is administered to children aged less than five years, independent of their vaccine status, and the strategic stock of inactivated polio vaccine. The presented estimated costs are of 2011.RESULTS The annual costs of the oral vaccine-only program (routine and two National Immunization Days) were estimated at US$19,873,170. The incremental costs of inclusion of the inactivated vaccine depended on the number of vaccine doses, presentation of the vaccine (bottles with single dose or ten doses), and number of “National Immunization Days” carried out. The cost of the regimen adopted with two doses of inactivated vaccine followed by three doses of oral vaccine and one “National Immunization Day” was estimated at US$29,653,539. The concomitant replacement of the DTPw/Hib and HepB vaccines with the pentavalent vaccine enabled the introduction of the inactivated polio without increasing the number of injections or number of visits needed to complete the vaccination.CONCLUSIONS The introduction of the inactivated vaccine increased the annual costs of the polio vaccines by 49.2% compared with the oral vaccine-only regimen. This increase represented 1.13% of the expenditure of the National Immunization Program on the purchase of vaccines in 2011.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Phase 1 double-blind placebo-controlled study was performed to evaluate a vaccine against American tegumentary leishmaniasis in 61 healthy male volunteers. Side effects and the immune response to the vaccine were evaluated, with 1- and 2- dose schemes, with intervals of 7 or 21 days, each dose containing 1440 mg of protein N antigen of a single strain of Leishmania amazonensis (PH 8) diluted in merthiolated saline (1:10,000). Merthiolated saline and an inert substance were used as placebos. No significant clinical alterations were found following the respective injections in the vaccinated individuals as compared to the placebos, except for local pain, which was associated significantly with injection of the vaccine. The laboratory alterations we observed bore no association with the clinical findings and were unimportant. We observed no differences between the groups with regard to seroconversion or the Montenegro skin test. However, the group that received a single dose of the vaccine and the one that received two doses with a 21-day interval displayed cutaneous induration significantly larger than in the control group, with 100%, 100%, and 66% conversion in the skin test, respectively. We concluded that the vaccine does not present any major side effect that would contraindicate its use in healthy individuals.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bovine herpesvirus type 1 (BoHV-1) is recognized as a major cause of economic losses in cattle. Vaccination has been widely applied to minimize losses induced by BoHV-1 infections. We have previously reported the development of a differential BoHV-1 vaccine, based on a recombinant glycoprotein E (gE)-deleted virus (265gE-). In present paper the efficacy of such recombinant was evaluated as an inactivated vaccine. Five BoHV-1 seronegative calves were vaccinated intramuscularly on day 0 and boostered 30 days later with an inactivated, oil adjuvanted vaccine containing an antigenic mass equivalent to 10(7.0) fifty per cent cell culture infectious doses (CCID50) of 265gE-. Three calves were kept as non vaccinated controls. On day 60 post vaccination both vaccinated and controls were challenged with the virulent parental strain. No clinical signs or adverse effects were seen after or during vaccination. After challenge, 2/5 vaccinated calves showed mild clinical signs of infection, whereas all non vaccinated controls displayed intense rhinotracheitis and shed virus for longer and to higher titres than vaccinated calves. Serological responses were detected in all vaccinated animals after the second dose of vaccine, but not on control calves. Following corticosteroid administration in attempting to induce reactivation of the latent infection, no clinical signs were observed in vaccinated calves, whereas non vaccinated controls showed clinical signs of respiratory disease. In view of its immunogenicity and protective effect upon challenge with a virulent BoHV-1, the oil adjuvanted preparation with the inactivated 265gE- recombinant was shown to be suitable for use as a vaccine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Uma vacina experimental inativada contra o herpesvírus bovino tipo 1 (BoHV-1) foi produzida com o objetivo de se avaliar a resposta imune humoral local e sistêmica contra o BoHV-1, em 12 novilhas soronegativas, após a vacinação e a revacinação. Os soros foram submetidos à prova de vírus-neutralização para quantificação do título de anticorpos neutralizantes e a um ELISA para detecção de IgG1 e IgG2. Os swabs nasais também foram submetidos ao ELISA para detecção de IgG1 e IgG2 na secreção nasal. Os resultados demonstraram que títulos de anticorpos neutralizantes foram induzidos após a revacinação, em níveis moderados a altos, permanecendo em níveis significativos no soro sanguíneo e na secreção nasal até o dia 114 pós-vacinação. O IgG2 foi o isótipo predominante na maior parte do período pós-vacinação, tanto na secreção nasal, como no compartimento sistêmico. A vacina experimental inativada contra o BoHV-1 estimulou níveis de anticorpos potencialmente protetores dos isótipos IgG1 e IgG2, tanto no compartimento sistêmico, como nas mucosas.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Adjuvants play an important role in vaccine formulations by increasing their immunogenicity. In this study, the phenolic compound-rich J fraction (JFR) of a Brazilian green propolis methanolic extract stimulated cellular and humoral immune responses when co-administered with an inactivated vaccine against swine herpesvirus type 1 (SuHV-1). When compared to control vaccines that used aluminium hydroxide as an adjuvant, the use of 10 mg/dose of JFR significantly increased (p < 0.05) neutralizing antibody titres against SuHV-1, as well as the percentage of protected animals following SuHV-1 challenge (p < 0.01). Furthermore, addition of phenolic compounds potentiated the performance of the control vaccine, leading to increased cellular and humoral immune responses and enhanced protection of animals after SuHV-1 challenge (p < 0.05). Prenylated compounds such as Artepillin C that are found in large quantities in JFR are likely to be the substances that are responsible for the adjuvant activity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The protective immune response generated by a commercial monovalent inactivated vaccine against bluetongue virus serotype 1 (BTV1) was studied. Five sheep were vaccinated, boost-vaccinated, and then challenged against BTV1 ALG/2006. RT-PCR did not detect viremia at any time during the experiment. Except a temperature increase observed after the initial and boost vaccinations, no clinical signs or lesions were observed. A specific and protective antibody response checked by ELISA was induced after vaccination and boost vaccination. This specific antibody response was associated with a significant increase in B lymphocytes confirmed by flow cytometry, while significant increases were not observed in T lymphocyte subpopulations (CD4(+), CD8(+), and WC1(+)), CD25(+) regulatory cells, or CD14(+) monocytes. After challenge with BTV1, the antibody response was much higher than during the boost vaccination period, and it was associated with a significant increase in B lymphocytes, CD14(+) monocytes, CD25(+) regulatory cells, and CD8(+) cytotoxic T lymphocytes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Despite the absence of current official reports showing the number of cattle infected by rabies, it is estimated that nearly 30,000 bovines are lost each year in Brazil. In order to minimize the important economic losses, control of the disease is achieved by eliminating bat colonies and by herd vaccination. In this study, we compare the antibody response in cattle elicited by vaccination with an attenuated ERA vaccine (AEvac) and an inactivated-adjuvanted PV (IPVvac) vaccine. The antibody titers were appraised by cell-culture neutralization test and ELISA, and the percentage of seropositivity was ascertained for a period of 180 days. IPVvac elicited complete seropositivity rates from day 30 to day 150, and even on day 180, 87% of the sera showed virus-neutralizing antibody titers (VNA) higher than 0.5IU/ml. There were no significant differences between the VNA titers and seropositivity rates obtained with IPVvac in the two methods tested. AEvac, however, elicited significantly lower titers than those observed in the group receiving inactivated vaccine. In addition, the profiles of antirabies IgG antibodies, evaluated by ELISA, and VNA, appraised by cell-culture neutralization test, were slightly different, when both vaccines were compared.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Bovine babesiosis is endemic in Venezuela, causing significant losses in highly susceptible imported cattle. Current immunoprphylatic methods include the less desirable use of live parasites. Inactivated vaccines derived from exoantigen-containing supernatant fluids of in vitro Babesia bovis and B. bigemina cultures have been developed and constitute a major improvement in vaccine safety, stability and ease of handling. Vaccination trials conducted under field conditions provide the final evaluation of a culture-derived B. bovis-B. bigemina vaccine. During a 5-year period, approximately 8,000 cattle were vaccinated and 16 clinical trials carried out in. 7 states of Venezuela Clinical, serologic and parasitologic data were collected monthly from 10% of the animals over a 2-year period. Data were also collected from a similar number of nonvaccinated control cattle. Analysis of results from these trials demonstrated a reduction in the incidence of clinical disease among vaccinated animals and complete protection against mortality among vaccinated and nonvaccinated cattle. Use of this inactivated vaccine offers the best combination od safety, potency and efficacy for thew immunoprophylatic control of bovine babesiosis.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Bluetongue virus (BTV) is an economically important member of the genus Orbivirus and closely related to African horse sickness virus (AHSV) and Epizootic hemorrhagic disease virus (EHDV). Currently, 26 different serotypes of BTV are known. The virus is transmitted by blood-feeding Culicoides midges and causes disease (bluetongue [BT]) in ruminants. In 2006/2007, BTV serotype 8 (BTV-8) caused widespread outbreaks of BT amongst livestock in Europe, which were eventually controlled employing a conventionally inactivated BTV vaccine. However, this vaccine did not allow the discrimination of infected from vaccinated animals (DIVA) by the commonly used VP7 cELISA. RNA replicon vectors based on propagation-incompetent recombinant vesicular stomatitis virus (VSV) represent a novel vaccine platform that combines the efficacy of live attenuated vaccines with the safety of inactivated vaccines. Our goal was to generate an RNA replicon vaccine for BTV-8, which is safe, efficacious, adaptable to emerging orbivirus infections , and compliant with the DIVA principle. The VP2, VP5, VP3 and VP7 genes encoding the BTV-8 capsid proteins, as well as the non-structural proteins NS1 and NS3 were inserted into a VSV vector genome lacking the essential VSV glycoprotein (G) gene. Infectious virus replicon particles (VRP) were produced on a transgenic helper cell line providing the VSV G protein in trans. Expression of antigens in vitro was analysed by immunofluorescence using monoclonal and polyclonal antibodies. In a pilot study, sheep were immunized with two different VRP-based vaccine candidates, one comprising the BTV-8 antigens VP2, VP5, VP3, VP7, NS1, and NS3, the other one containing antigens VP3, VP7, NS1, and NS3. Control animals received VRPs containing an irrelevant antigen. Virus neutralizing antibodies and protection after BTV-8 challenge were evaluated and compared to animals immunized with the conventionally inactivated vaccine. Full protection was induced only when the two antigens VP2 and VP5 were included in the vaccine. To further evaluate if VP2 alone, a combination of VP2 and VP5 or VP5 alone were necessary for complete protection, we performed a second animal trial. Interestingly, VP2 as well as the combination of VP2 and VP5 but not VP5 alone conferred full protection in terms of neutralizing antibodies, and protection from clinical signs and viremia after BTV-8 challenge. These results show that the VSV replicon system represents a safe, efficacious and DIVA-compliant vaccine against BTV as well as a possible platform for protection against other Orbiviruses, such as AHSV and EHDV.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objective: to discuss the current PAHO recommendation that does not support the substitution of traditional cellular DTP vaccine by acellular DTP, and the role of mutations, in humans, as the main cause of rare adverse events, such as epileptic-like convulsions, triggered by pertussis vaccine. Data review: the main components related to toxic effects of cellular pertussis vaccines are the lipopolysaccharide of bacterial cell wall and pertussis toxin. The removal of part of lipopolysaccharide layer has allowed the creation of a safer cellular pertussis vaccine, with costs comparable to the traditional cellular vaccine, and which may be a substitute for the acellular vaccine. Conclusion: The new methodology introduced by Instituto Butantan allows for the development of a new safer pertussis vaccine with low LPS content (Plow), and the use of the lipopolysaccharide obtained in the process in the production of monophosphoryl lipid A. This component has shown potent adjuvant effect when administered together with influenza inactivated vaccine, making possible to reduce the antigen dose, enhancing the production capacity and lowering costs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Respiratory syncytial virus is the most important cause of viral lower respiratory illness in infants and children worldwide. By the age of 2 years, nearly every child has become infected with respiratory syncytial virus and re-infections are common throughout life. Most infections are mild and can be managed at home, but this virus causes serious diseases in preterm children, especially those with bronchopulmonary dysplasia. Respiratory syncytial virus has also been recognized as an important pathogen in people with immunossupressive and other underlying medical problems and institutionalizated elderly, causing thousands of hospitalizations and deaths every year. The burden of these infections makes the development of vaccines for respiratory syncytial virus highly desirable, but the insuccess of a respiratory syncytial virus formalin-inactivated vaccine hampered the progress in this field. To date, there is no vaccine available for preventing respiratory syncytial virus infections, however, in the last years, there has been much progress in the understanding of immunology and immunopathologic mechanisms of respiratory syncytial virus diseases, which has allowed the development of new strategies for passive and active prophylaxis. In this article, the author presents a review about novel approaches to the prevention of respiratory syncytial virus infections, such as: passive immunization with human polyclonal intravenous immune globulin and humanized monoclonal antibodies (both already licensed for use in premature infants and children with bronchopulmonary dysplasia), and many different vaccines that are potential candidates for active immunization against respiratory syncytial virus.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In order to determine the best type of rabies vaccine to use as a booster, 78 serological samples from singly vaccinated cattle were analyzed by counterimmunoelectrophoresis technique. The animals were divided into several groups, received the first vaccine dose with modified live virus vaccine (ERA strain) and were revaccinated with inactivated virus or modified live virus vaccines. Boosters were given at 2, 4, 8, 12 and 16 weeks following first vaccination. Results showed high titres in the cases of booster with inactivated vaccine. In all cases, however, detectable antibody titres declined quickly.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A total of 360 pacus (Piaractus mesopotamicus) were used to study vascular permeability (VP) and inflammatory cell component (CC) in induced aerocystitis in P. mesopotamicus through inoculation of inactivated Aeromonas hydrophila, and the effect of steroidal and nonsteroidal anti-inflammatory drugs. It was observed that after inoculation of A. hydrophila, the maximum VP occurred 180 min post-stimulus (MPS). Pretreatment with anti-inflammatory drugs inhibited VP, and the inhibitory effect of dexamethasone was seen earlier than the effects caused by meloxicam and indomethacin. Inoculation of the bacterium caused a gradual increase in the accumulation of cells, which reached a maximum 24 h post-stimulus (HPS). Pretreatment with dexamethasone, indomethacin and meloxicam reduced the accumulation of lymphocytes, thrombocytes, granulocytes and macrophages. There was no significant difference between the different doses of the drugs tested. The results suggest that eicosanoids and pro-inflammatory cytokines participate in chemical mediation in acute inflammation in pacus. © 2013 Elsevier Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)