917 resultados para in vivo-expressed genes


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims: Genes uniquely expressed in vivo may contribute to the overall pathogenicity of an organism and are likely to serve as potential targets for the development of new vaccine. This study aims to screen the genes expressed in vivo after Vibrio anguillarum infection by in vivo-induced antigen technology (IVIAT). Methods and Results: The convalescent-phase sera were obtained from turbot (Scophthalmus maximus) survived after infection by the virulent V. anguillarum M3. The pooled sera were thoroughly adsorbed with M3 cells and Escherichia coli BL21 (DE3) cells. A genomic expression library of M3 was constructed and screened for the identification of immunogenic proteins by colony immunoblot analysis with the adsorbed sera. After three rounds of screening, 19 putative in vivo-induced (ivi) genes were obtained. These ivi genes were catalogued into four functional groups: regulator/signalling, metabolism, biological process and hypothetical proteins. Three ivi genes were insertion-mutated, and the growth and 50% lethal dose (LD50) of these mutants were evaluated. Conclusions: The identification of ivi genes in V. anguillarum M3 sheds light on understanding the bacterial pathogenesis and provides novel targets for the development of new vaccines and diagnostic reagents. Significance and Impact of the Study: To the best of our knowledge, this is the first report describing in vivo-expressed genes of V. anguillarum using IVIAT. The screened ivi genes in this study could be new virulent factors and targets for the development of vaccine, which may have implications for the development of diagnostic regents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims: Genes uniquely expressed in vivo may contribute to the overall pathogenicity of an organism and are likely to serve as potential targets for the development of new vaccine. This study aims to screen the genes expressed in vivo after Vibrio anguillarum infection by in vivo-induced antigen technology (IVIAT). Methods and Results: The convalescent-phase sera were obtained from turbot (Scophthalmus maximus) survived after infection by the virulent V. anguillarum M3. The pooled sera were thoroughly adsorbed with M3 cells and Escherichia coli BL21 (DE3) cells. A genomic expression library of M3 was constructed and screened for the identification of immunogenic proteins by colony immunoblot analysis with the adsorbed sera. After three rounds of screening, 19 putative in vivo-induced (ivi) genes were obtained. These ivi genes were catalogued into four functional groups: regulator/signalling, metabolism, biological process and hypothetical proteins. Three ivi genes were insertion-mutated, and the growth and 50% lethal dose (LD50) of these mutants were evaluated. Conclusions: The identification of ivi genes in V. anguillarum M3 sheds light on understanding the bacterial pathogenesis and provides novel targets for the development of new vaccines and diagnostic reagents. Significance and Impact of the Study: To the best of our knowledge, this is the first report describing in vivo-expressed genes of V. anguillarum using IVIAT. The screened ivi genes in this study could be new virulent factors and targets for the development of vaccine, which may have implications for the development of diagnostic regents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To understand the genetic basis that underlies the phenotypic divergence between human and non-human primates, we screened a total of 7176 protein-coding genes expressed in the human brain and compared them with the chimpanzee orthologs to identity genes

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chondrocyte gene regulation is important for the generation and maintenance of cartilage tissues. Several regulatory factors have been identified that play a role in chondrogenesis, including the positive transacting factors of the SOX family such as SOX9, SOX5, and SOX6, as well as negative transacting factors such as C/EBP and delta EF1. However, a complete understanding of the intricate regulatory network that governs the tissue-specific expression of cartilage genes is not yet available. We have taken a computational approach to identify cis-regulatory, transcription factor (TF) binding motifs in a set of cartilage characteristic genes to better define the transcriptional regulatory networks that regulate chondrogenesis. Our computational methods have identified several TFs, whose binding profiles are available in the TRANSFAC database, as important to chondrogenesis. In addition, a cartilage-specific SOX-binding profile was constructed and used to identify both known, and novel, functional paired SOX-binding motifs in chondrocyte genes. Using DNA pattern-recognition algorithms, we have also identified cis-regulatory elements for unknown TFs. We have validated our computational predictions through mutational analyses in cell transfection experiments. One novel regulatory motif, N1, found at high frequency in the COL2A1 promoter, was found to bind to chondrocyte nuclear proteins. Mutational analyses suggest that this motif binds a repressive factor that regulates basal levels of the COL2A1 promoter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

IVET was used to identify genes that are specifically expressed in the rhizosphere of the pea-nodulating bacterium Rhizobium leguminosarum A34. A library of R. leguminosarum A34 cloned in the integration vector pIE1, with inserts upstream of a promoter-less purN:gfp:gusA, was conjugated into purN host RU2249 and recombined into the genome. After removal of colonies that expressed the reporter genes of the vector under laboratory conditions, the library was inoculated into a nonsterile pea rhizosphere. The key result is that 29 rhizosphere-induced loci were identified. Sequence analysis of these clones showed that a wide variety of R. leguminosarum A34 genes are expressed specifically in the rhizosphere including those encoding proteins involved in environmental sensing, control of gene expression, metabolic reactions and membrane transport. These genes are likely to be important for survival and colonization of the pea rhizosphere.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new strategy for rapidly selecting and testing genetic vaccines has been developed, in which a whole genome library is cloned into a bacteriophage λ ZAP Express vector which contains both prokaryotic (Plac) and eukaryotic (PCMV) promoters upstream of the insertion site. The phage library is plated on Escherichia coli cells, immunoblotted, and probed with hyperimmune and/or convalescent-phase antiserum to rapidly identify vaccine candidates. These are then plaque purified and grown as liquid lysates, and whole bacteriophage particles are then used directly to immunize the host, following which PCMV-driven expression of the candidate vaccine gene occurs. In the example given here, a semirandom genome library of the bovine pathogen Mycoplasma mycoides subsp. mycoides small colony (SC) biotype was cloned into λ ZAP Express, and two strongly immunodominant clones, λ-A8 and λ-B1, were identified and subsequently tested for vaccine potential against M. mycoides subsp. mycoides SC biotype-induced mycoplasmemia. Sequencing and immunoblotting indicated that clone λ-A8 expressed an isopropyl-β-d-thiogalactopyranoside (IPTG)-inducible M. mycoides subsp. mycoides SC biotype protein with a 28-kDa apparent molecular mass, identified as a previously uncharacterized putative lipoprotein (MSC_0397). Clone λ-B1 contained several full-length genes from the M. mycoides subsp. mycoides SC biotype pyruvate dehydrogenase region, and two IPTG-independent polypeptides, of 29 kDa and 57 kDa, were identified on immunoblots. Following vaccination, significant anti-M. mycoides subsp. mycoides SC biotype responses were observed in mice vaccinated with clones λ-A8 and λ-B1. A significant stimulation index was observed following incubation of splenocytes from mice vaccinated with clone λ-A8 with whole live M. mycoides subsp. mycoides SC biotype cells, indicating cellular proliferation. After challenge, mice vaccinated with clone λ-A8 also exhibited a reduced level of mycoplasmemia compared to controls, suggesting that the MSC_0397 lipoprotein has a protective effect in the mouse model when delivered as a bacteriophage DNA vaccine. Bacteriophage-mediated immunoscreening using an appropriate vector system offers a rapid and simple technique for the identification and immediate testing of putative candidate vaccines from a variety of pathogens.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Proteases of Staphylococcus aureus have long been considered to function as important virulence factors, although direct evidence of the role of particular enzymes remains incomplete and elusive. Here, we sought to provide a collective view of the prevalence of extracellular protease genes in genomes of commensal and pathogenic strains of S. aureus and their expression in the course of human and mouse infection. Data on V8 protease, staphopains A and B, aureolysin, and the recently described and poorly characterized group of six Spl proteases are provided. A phylogenetically diverse collection of 167 clinical isolates was analyzed, resulting in the comprehensive genetic survey of the prevalence of protease-encoding genes. No correlation between identified gene patterns with specific infections was established. Humoral response against the proteases of interest was examined in the sera derived from human patients and from a model mouse infection. The analysis suggests that at least some, if not all, tested proteases are expressed and secreted during the course of infection. Overall, the results presented in this study support the hypothesis that the secretory proteases as a group may contribute to the virulence of S. aureus.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

E2F is a heterodimeric transcription factor that regulates the expression of genes at the G1/S boundary and is composed of two related but distinct families of proteins, E2F and DP. E2F/DP heterodimers form complexes with the retinoblastoma (Rb) protein, the Rb-related proteins p107 and p130, and cyclins/cdks in a cell cycle-dependent fashion in vivo. E2F is encoded by at least five closely related genes, E2F-1 through -5. Here we report studies of DP-2, the second member of the DP family of genes. Our results indicate that (i) DP-2 encodes at least five distinct mRNAs, (ii) a site of alternative splicing occurs within the 5' untranslated region of DP-2 mRNA, (iii) at least three DP-2-related proteins (of 55, 48, and 43 kDa) are expressed in vivo, (iv) each of these proteins is phosphorylated, and (v) one DP-2 protein (43 kDa) carries a truncated amino terminus. Our data also strongly suggest that the 55-kDa DP-2-related protein is a novel DP-2 isoform that results from alternative splicing. Thus, we conclude that DP-2 encodes a set of structurally, and perhaps functionally, distinct proteins in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Genetic evidence has implicated several genes as being critical for heart development. However, the inducers of these genes as well as their targets and pathways they are involved with, remain largely unknown. Previous studies in the avian embryo showed that at HH4 Cerberus (cCer) transcripts are detected in the anterior endomesoderm including the heart precursor cells and later in the left lateral plate mesoderm. We have identified a promoter element of chick cCer able to drive EGFP expression in a population of cells that consistently exit from the anterior primitive streak region, from as early as stage HH3+, and that later will populate the heart. Using this promoter element as a tool allowed us to identify novel genes previously not known to potentially play a role in heart development. In order to identify and study genes expressed and involved in the correct development and differentiation of the vertebrate heart precursor cell (HPC) lineages, a differential screening using Affymetrix GeneChip system technologies was performed. Remarkably, this screening led to the identification of more than 700 transcripts differentially expressed in the heart forming regions (HFR). Bioinformatic tools allowed us to filter the large amount of data generated from this approach and to select a few transcripts for in vivo validation. Whole-mount in situ hybridization and sectioning of selected genes showed heart and vascular expression patterns for these transcripts during early chick development. We have developed an effective strategy to specifically identify genes that are differentially expressed in the HPC lineages. Within this set we have identified several genes that are expressed in the heart, blood and vascular lineages, which are likely to play a role in their development. These genes are potential candidates for future functional studies on early embryonic patterning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A number of human cancer cell lines have been described as being invasive and metastatic in immune incompetent animals. However, it is difficult to assess metastatic spread of a subcutaneously injected or inoculated cell line, since an exact detection of all microfoci of human tumour cells in the animals by usual histological procedures would require extensive sectioning of the whole animal. To overcome this problem, we transduced human breast cancer cells with a replication-defective Moloney murine leukaemia retroviral vector (M-MuLV) containing both neo(R) (neomycin resistance) and lacZ genes. The resulting cell lines were selected for antibiotic (G418) resistance, and cell-sorted for lacZ expression. lacZ continued to be expressed in cultured cells for at least 20 passages without further G418 selection. The lacE gene codes for β-D-galactosidase, and cells expressing this gene stain blue with the chromogenic substrate X-gal. The lacZ-expressing cells retained the pre-transduction ability to traverse Matrigel in vitro, to form subcutaneous tumours in nude mice, and to grow invasively with the formation of metastases. X-gal staining showed high specificity, staining the tumour cells but not the surrounding mouse tissue on either whole tissue blocks or histological sections. The staining procedure was highly sensitive, allowing detection of microfoci of human cancer cells, and quantitative estimation of the metastatic capacity of the cells. These results indicate that lacZ transduction of human tumour cells is a powerful means of studying human cancer cell invasion and metastases in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Meleagrid herpesvirus 1 (MeHV-1 or turkey herpesvirus) has been widely used as a vaccine in commercial poultry. Initially, these vaccine applications were for the prevention of Marek’s disease resulting from Gallid herpesvirus 2 infections, while more recently MeHV-1 has been used as recombinant vector for other poultry infections. The construction of herpesvirus infectious clones that permit propagation and manipulation of the viral genome in bacterial hosts has advanced the studies of herpesviral genetics. The current study reports the construction of five MeHV-1 infectious clones. The in vitro properties of viruses recovered from these clones were indistinguishable from the parental MeHV-1. In contrast, the rescued MeHV-1 viruses were significantly attenuated when used in vivo. Complete sequencing of the infectious clones identified the absence of two regions of the MeHV-1 genome compared to the MeHV-1 reference sequence. These analyses determined the rescued viruses have seven genes, UL43, UL44, UL45, UL56, HVT071, sorf3 and US2 either partially or completely deleted. In addition, single nucleotide polymorphisms were identified in all clones compared with the MeHV-1 reference sequence. As a consequence of one of the polymorphisms identified in the UL13 gene, four of the rescued viruses were predicted to encode a serine/threonine protein kinase lacking two of three domains required for activity. Thus four of the recovered viruses have a total of eight missing or defective genes. The implications of these findings in the context of herpesvirus biology and infectious clone construction are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Meleagrid herpesvirus 1 (MeHV-1 or turkey herpesvirus) has been widely used as a vaccine in commercial poultry. Initially, these vaccine applications were for the prevention of Marek’s disease resulting from Gallid herpesvirus 2 infections, while more recently MeHV-1 has been used as recombinant vector for other poultry infections. The construction of herpesvirus infectious clones that permit propagation and manipulation of the viral genome in bacterial hosts has advanced the studies of herpesviral genetics. The current study reports the construction of five MeHV-1 infectious clones. The in vitro properties of viruses recovered from these clones were indistinguishable from the parental MeHV-1. In contrast, the rescued MeHV-1 viruses were significantly attenuated when used in vivo. Complete sequencing of the infectious clones identified the absence of two regions of the MeHV-1 genome compared to the MeHV-1 reference sequence. These analyses determined the rescued viruses have seven genes, UL43, UL44, UL45, UL56, HVT071, sorf3 and US2 either partially or completely deleted. In addition, single nucleotide polymorphisms were identified in all clones compared with the MeHV-1 reference sequence. As a consequence of one of the polymorphisms identified in the UL13 gene, four of the rescued viruses were predicted to encode a serine/threonine protein kinase lacking two of three domains required for activity. Thus four of the recovered viruses have a total of eight missing or defective genes. The implications of these findings in the context of herpesvirus biology and infectious clone construction are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The skin cancer incidence has increased substantially over the past decades and the role of ultraviolet (UV) radiation in the etiology of skin cancer is well established. Ultraviolet B radiation (280-320 nm) is commonly considered as the more harmful part of the UV-spectrum due to its DNA-damaging potential and well-known carcinogenic effects. Ultraviolet A radiation (320-400 nm) is still regarded as a relatively low health hazard. However, UVA radiation is the predominant component in sunlight, constituting more than 90% of the environmentally relevant solar ultraviolet radiation. In the light of the recent scientific evidence, UVA has been shown to have genotoxic and immunologic effects, and it has been proposed that UVA plays a significant role in the development of skin cancer. Due to the popularity of skin tanning lamps, which emit high intensity UVA radiation and because of the prolonged sun tanning periods with the help of effective UVB blockers, the potential deleterious effects of UVA has emerged as a source of concern for public health. The possibility that UV radiation may affect melanoma metastasis has not been addressed before. UVA radiation can modulate various cellular processes, some of which might affect the metastatic potential of melanoma cells. The aim of the present study was to investigate the possible role of UVA irradiation on the metastatic capacity of mouse melanoma both in vitro and in vivo. The in vitro part of the study dealt with the enhancement of the intercellular interactions occurring either between tumor cells or between tumor cells and endothelial cells after UVA irradiation. The use of the mouse melanoma/endothelium in vitro model showed that a single-dose of UVA to melanoma cells causes an increase in melanoma cell adhesiveness to non-irradiated endothelium after 24-h irradiation. Multiple-dose irradiation of melanoma cells already increased adhesion at a 1-h time-point, which suggests the possible cumulative effect of multiple doses of UVA irradiation. This enhancement of adhesiveness might lead to an increase in binding tumor cells to the endothelial lining of vasculature in various internal organs if occurring also in vivo. A further novel observation is that UVA induced both decline in the expression of E-cadherin adhesion molecule and increase in the expression of the N-cadherin adhesion molecule. In addition, a significant decline in homotypic melanoma-melanoma adhesion (clustering) was observed, which might result in the reduction of E-cadherin expression. The aim of the in vivo animal study was to confirm the physiological significance of previously obtained in vitro results and to determine whether UVA radiation might increase melanoma metastasis in vivo. The use of C57BL/6 mice and syngeneic melanoma cell lines B16-F1 and B16-F10 showed that mice, which were i.v. injected with B16-F1 melanoma cells and thereafter exposed to UVA developed significantly more lung metastases when compared with the non-UVA-exposed group. To study the mechanism behind this phenomenon, the direct effect of UVA-induced lung colonization capacity was examined by the in vitro exposure of B16-F1 cells. Alternatively, the UVA-induced immunosuppression, which might be involved in increased melanoma metastasis, was measured by standard contact hypersensitivity assay (CHS). It appears that the UVA-induced increase of metastasis in vivo might be caused by a combination of UVA-induced systemic immunosuppression, and to the lesser extent, it might be caused by the increased adhesiveness of UVA irradiated melanoma cells. Finally, the UVA effect on gene expression in mouse melanoma was determined by a cDNA array, which revealed UVA-induced changes in the 9 differentially expressed genes that are involved in angiogenesis, cell cycle, stress-response, and cell motility. These results suggest that observed genes might be involved in cellular response to UVA and a physiologically relevant UVA dose have previously unknown cellular implications. The novel results presented in this thesis offer evidence that UVA exposure might increase the metastatic potential of the melanoma cells present in blood circulation. Considering the wellknown UVA-induced deleterious effects on cellular level, this study further supports the notion that UVA radiation might have more potential impact on health than previously suggested. The possibility of the pro-metastatic effects of UVA exposure might not be of very high significance for daily exposures. However, UVA effects might gain physiological significance following extensive sunbathing or solaria tanning periods. Whether similar UVA-induced pro-metastatic effects occur in people sunbathing or using solaria remains to be determined. In the light of the results presented in this thesis, the avoidance of solaria use could be well justified.