954 resultados para in vivo model


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A number of human cancer cell lines have been described as being invasive and metastatic in immune incompetent animals. However, it is difficult to assess metastatic spread of a subcutaneously injected or inoculated cell line, since an exact detection of all microfoci of human tumour cells in the animals by usual histological procedures would require extensive sectioning of the whole animal. To overcome this problem, we transduced human breast cancer cells with a replication-defective Moloney murine leukaemia retroviral vector (M-MuLV) containing both neo(R) (neomycin resistance) and lacZ genes. The resulting cell lines were selected for antibiotic (G418) resistance, and cell-sorted for lacZ expression. lacZ continued to be expressed in cultured cells for at least 20 passages without further G418 selection. The lacE gene codes for β-D-galactosidase, and cells expressing this gene stain blue with the chromogenic substrate X-gal. The lacZ-expressing cells retained the pre-transduction ability to traverse Matrigel in vitro, to form subcutaneous tumours in nude mice, and to grow invasively with the formation of metastases. X-gal staining showed high specificity, staining the tumour cells but not the surrounding mouse tissue on either whole tissue blocks or histological sections. The staining procedure was highly sensitive, allowing detection of microfoci of human cancer cells, and quantitative estimation of the metastatic capacity of the cells. These results indicate that lacZ transduction of human tumour cells is a powerful means of studying human cancer cell invasion and metastases in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Epithelial-to-mesenchymal transition (EMT) processes endow epithelial cells with enhanced migratory/invasive properties and are therefore likely to contribute to tumor invasion and metastatic spread. Because of the difficulty in following EMT processes in human tumors, we have developed and characterized an animal model with transplantable human breast tumor cells (MDA-MB-468) uniquely showing spontaneous EMT events to occur. Using vimentin as a marker of EMT, heterogeneity was revealed in the primary MDA-MB-468 xenografts with vimentin-negative and vimentin-positive areas, as also observed on clinical human invasive breast tumor specimens. Reverse transcriptase-PCR after microdissection of these populations from the xenografts revealed EMT traits in the vimentin-positive zones characterized by enhanced 'mesenchymal gene' expression (Snail, Slug and fibroblast-specific protein-1) and diminished expression of epithelial molecules (E-cadherin, ZO-3 and JAM-A). Circulating tumor cells (CTCs) were detected in the blood as soon as 8 days after s.c. injection, and lung metastases developed in all animals injected as examined by in vivo imaging analyses and histology. High levels of vimentin RNA were detected in CTCs by reverse transcriptase-quantitative PCR as well as, to a lesser extent, Snail and Slug RNA. Von Willebrand Factor/vimentin double immunostainings further showed that tumor cells in vascular tumoral emboli all expressed vimentin. Tumoral emboli in the lungs also expressed vimentin whereas macrometastases displayed heterogenous vimentin expression, as seen in the primary xenografts. In conclusion, our data uniquely demonstrate in an in vivo context that EMT occurs in the primary tumors, and associates with an enhanced ability to intravasate and generate CTCs. They further suggest that mesenchymal-to-epithelial phenomena occur in secondary organs, facilitating the metastatic growth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Currently used xenograft models for prostate cancer bone metastasis lack the adequate tissue composition necessary to study the interactions between human prostate cancer cells and the human bone microenvironment. We introduce a tissue engineering approach to explore the interactions between human tumor cells and a humanized bone microenvironment. Scaffolds, seeded with human primary osteoblasts in conjunction with BMP7, were implanted into immunodeficient mice to form humanized tissue engineered bone constructs (hTEBCs) which consequently resulted in the generation of highly vascularized and viable humanized bone. At 12 weeks, PC3 and LNCaP cells were injected into the hTEBCs. Seven weeks later the mice were euthanized. Micro-CT, histology, TRAP, PTHrP and osteocalcin staining results reflected the different characteristics of the two cell lines regarding their phenotypic growth pattern within bone. Microvessel density, as assessed by vWF staining, showed that tumor vessel density was significantly higher in LNCaP injected hTEBC implants than in those injected with PC3 cells (p\0.001). Interestingly, PC3 cells showed morphological features of epithelial and mesenchymal phenotypes suggesting a cellular plasticity within this microenvironment. Taken together, a highly reproducible humanized model was established which is successful in generating LNCaP and PC3 tumors within a complex humanized bone microenvironment. This model simulates the conditions seen clinically more closely than any other model described in the literature to date and hence represents a powerful experimental platform that can be used in future work to investigate specific biological questions relevant to bone metastasis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chinese rare minnow (Gobiocypris rarus), a freshwater teleost,. was exposed to diethylstilbestrol (DES) at 0.05, 0.5, 1 and 5 mug/L from fertilized eggs for up to mature period under flow-through condition. Several endpoints that related to development, reproductive fitness and transgenerational effects were evaluated. It was found that body length and body weight were significantly reduced and vitellogenin (Via) levels were significantly increased for fish exposed to DES. Histological examination showed that the sex ratios of F-0 fish skewed to female and about 2% of the fish exposed to 0.05 mug/L DES developed testes-ova. The reproductive success, as determined from data on egg production, was reduced in female fish exposed to 0.05, 0.5, 1 and 5 mug/L DES. The lowest-observed-effect concentrations (LOEC) for chances of sex ratios, reproductive success and histology alteration of F-0 are 0.05 mug/L. In the offspring, transgenerational effects on egg hatching rate. egg fertilization and Vtg levels of juvenile individuals were not observed. However. survival of F, generation fry significantly declined. The analysis of sex steroid levels revealed a significant decrease of testosterone (T) in the whole body homogenates (WBH) of male progeny and somewhat elevation of estradiol (E-T) in the WBH of female offspring. These findings indicate that exposure to DES causes a variety of developmental, reproductive and transgenerational effects. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ethnopharmacological relevance: A common plant used to treat several gastric disorders is Buddleja scordioides Kunth,commonly known as salvilla. Aim of thes tudy: To detect inflammatory markers,in order to evaluate the gastroprotective potential of salvilla infusions,as this could have beneficial impact on the population exposed to gastric ulcers and colitis. Materials and methods: The present work attempted infusions were prepared with B. scordioides (1% w/w) lyophilized and stored.Total phenolic content and GC–MS analysis were performed. Wistar rats were divided into five groups a negative vehicle control,an indomethacin group,and three experimental groups,named preventive,curative,and suppressive. All rats were sacrificed under deep ether anesthesia(6h)after the last oral administration of indomethacin/infusion.The rat stomachs were promptly excised,weighed,and chilled in ice-cold and 0.9%NaCl.Histological analysis,nitrites quantification and immunodetection assays were done. Results: B.scordioides infusions markedly reduced the visible hemorrhagic lesions induced byindomethacin in rat stomachs,also showed down-regulation of COX2, IL-8 and TNFα and up-regulation of COX-1with a moderate down-regulation of NFkB and lower amount of nitrites.However,this behavior was dependent on the treatment,showing most down-regulation of COX-2,TNFα and IL-8 in the curative treatment;more down-regulation of NF-kB in the preventive treatment;and more up-regulation of COX-1 for the suppressor and preventive treatments. Conclusion: The anti-inflammatory potential of B. scordioides infusions could be related with the presence of polyphenols as quercetin in the infusion and how this one is consumed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite studies demonstrating that inhibition of cyclooxygenase-2 (COX-2)-derived prostaglandin E2 (PGE2) has significant chemotherapeutic benefits in vitro and in vivo, inhibition of COX enzymes is associated with serious gastrointestinal and cardiovascular side effects, limiting the clinical utility of these drugs. PGE2 signals through four different receptors (EP1–EP4) and targeting individual receptor(s) may avoid these side effects, while retaining significant anticancer benefits. Here, we show that targeted inhibition of the EP1 receptor in the tumor cells and the tumor microenvironment resulted in the significant inhibition of tumor growth in vivo. Both dietary administration and direct injection of the EP1 receptor-specific antagonist, ONO-8713, effectively reduced the growth of established CT26 tumors in BALB/c mice, with suppression of the EP1 receptor in the tumor cells alone less effective in reducing tumor growth. This antitumor effect was associated with reduced Fas ligand expression and attenuated tumor-induced immune suppression. In particular, tumor infiltration by CD4+CD25+Foxp3+ regulatory T cells was decreased, whereas the cytotoxic activity of isolated splenocytes against CT26 cells was increased. F4/80+ macrophage infiltration was also decreased; however, there was no change in macrophage phenotype. These findings suggest that the EP1 receptor represents a potential target for the treatment of colon cancer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The concept of ‘The Three Rs’ (The 3Rs: reduction, refinement and replacement) is an important consideration in the development of alternatives to animal testing in medical research. Invertebrate models such as Galleria mellonella are advantageous both economically and ethically.1 Galleria have proven to be effective alternatives to assess the antimicrobial activity of novel therapeutics.2
In this study Galleria mellonella are validated and used as an in vivo infection model to determine the antimicrobial activity of a novel self-assembling antimicrobial peptide NapFFKK.3 The peptide was considered as being non-toxic to the Galleria with 100% survival 120 hours post inoculation with NapFFKK. Following inoculation with Pseudomonas aeruginosa PAO1, Escherichia coli ATCC 11303, Staphylococcus epidermidis ATCC 35984 and Staphylococcus aureus ATCC 6538, the highest concentration allowing survival was selected and used as the test inoculum. Haemolymph was extracted from inoculated and peptide treated Galleria at either 24 or 72 hours post-treatment. Reduction in bacterial load was determined in comparison to a positive control. Bacterial load was decreased in all treated Galleria with decreasing antimicrobial activity demonstrated with a decreased concentration of peptide (2- log cycle reduction achieved in Escherichia coli inoculated Galleria treated with 2% NapFFKK). The results are promising regarding the use of Galleria mellonella as an infection model and NapFFKK as an effective novel antimicrobial.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To demonstrate that abdominal pressure impacts venous flow and pressure characteristics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Intracoronary administration of glycosaminoglycan analogs, including the complement inhibitor dextran sulfate, attenuates myocardial ischemia/reperfusion injury (I/R injury). However, dextran sulfate has a distinct anticoagulatory effect, possibly limiting its use in specific situations in vivo. We therefore developed multimeric tyrosine sulfate (sTyr-PAA), a novel, minimally anticoagulatory, fully synthetic non-carbohydrate-containing polyacrylamide conjugate, for in vivo testing in an acute closed-chest porcine model of acute myocardial infarction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECT: The aim of this study was to develop and characterize a new orthotopic, syngeneic, transplantable mouse brain tumor model by using the cell lines Tu-9648 and Tu-2449, which were previously isolated from tumors that arose spontaneously in glial fibrillary acidic protein (GFAP)-v-src transgenic mice. METHODS: Striatal implantation of a 1-microl suspension of 5000 to 10,000 cells from either clone into syngeneic B6C3F1 mice resulted in tumors that were histologically identified as malignant gliomas. Prior subcutaneous inoculations with irradiated autologous cells inhibited the otherwise robust development of a microscopically infiltrating malignant glioma. Untreated mice with implanted tumor cells were killed 12 days later, when the resultant gliomas were several millimeters in diameter. Immunohistochemically, the gliomas displayed both the astroglial marker GFAP and the oncogenic form of signal transducer and activator of transcription-3 (Stat3). This form is called tyrosine-705 phosphorylated Stat3, and is found in many malignant entities, including human gliomas. Phosphorylated Stat3 was particularly prominent, not only in the nucleus but also in the plasma membrane of peripherally infiltrating glioma cells, reflecting persistent overactivation of the Janus kinase/Stat3 signal transduction pathway. The Tu-2449 cells exhibited three non-random structural chromosomal aberrations, including a deletion of the long arm of chromosome 2 and an apparently balanced translocation between chromosomes 1 and 3. The GFAP-v-src transgene was mapped to the pericentromeric region of chromosome 18. CONCLUSIONS: The high rate of engraftment, the similarity to the high-grade malignant glioma of origin, and the rapid, locally invasive growth of these tumors should make this murine model useful in testing novel therapies for human malignant gliomas.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The technique of growing human leukaemic cells in diffusion chambers was developed to enable chemicals to be assessed for their ability to induce terminal differentiation. HL-60 promyelocytic leukaemia cell growth, in a lucite chamber with a Millipore filter, was optimised by use of a lateral incision site. Chambers were constructed using 0.45um filters and contained 150ul of serum-free HL-60 cells at a density of 1x106 cells/ml. The chambers were implanted into CBA/Ca mice and spontaneous terminal differentiation of the cells to granulocytes was prevented by the use of serum-free medium. Under these conditions there was an initial growth lag of 72 hours and a logarithmic phase of growth for 96 hours; the cell number reached a plateau after 168 hours of culture in vivo. The amount of drug in the plasma of the animal and in chambers that had been implanted for 5 days, was determined after a single ip injection of equitoxic doses of N-methylformamide, N-ethylformamide, tetramethylurea, N-dibutylformamide, N-tetramethylbutylformamide and hexamethylenebisacetamide. Concentrations of both TMU and HMBA were obtained in the plasma and in the chamber which were pharmacologically effective for the induction of differentiation of HL-60 cells in vitro, that is 12mM TMU and 5mM HMBA. A 4 day regime of treatment of animals implanted with chambers demonstrated that TMU and HMBA induced terminal differentiation of 50% and 35%, respectively, of the implanted HL-60 cells to granulocyte-like cells, assessed by measurement of functional and biochemical markers of maturity. None of the other agents attained concentrations in the plasma that were pharmacologically effective for the induction of differentiation of the cells in vitro and were unable to induce the terminal differentiation of the cells in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The natural selection of anticoagulant resistant rats has resulted in a need for an alternative to anticoagulant rodenticides which differs in both active ingredient and in the method of dosing. Cholecalciferol toxicity to rodents using the dermal route is demonstrated using a variety of penetration enhancing formulations in two in-vitro models and finally in-vivo. A 1 ml dose of 50/50 (v/v) DMSO/ethanol containing 15% (v/v) PEG 200 and 20% (w/v) cholecalciferol was judged as 'sufficiently effective' in line with the European Union's Biocidal Products Regulation (No. 528/2012) during in-vivo studies. This dose was found to cause 100% mortality in a rat population in 64.4 h (±22 h).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Breast cancer in its advanced stage has a high predilection to the skeleton. Currently, treatment options of breast cancer-related bone metastasis are restricted to only palliative therapeutic modalities. This is due to the fact that mechanisms regarding the breast cancer celI-bone colonisation as well as the interactions of breast cancer cells with the bone microenvironment are not fully understood, yet. This might be explained through a lack of appropriate in vitro and in vivo models that are currently addressing the above mentioned issue. Hence the hypothesis that the translation of a bone tissue engineering platform could lead to improved and more physiological in vitro and in vivo model systems in order to investigate breast cancer related bone colonisation was embraced in this PhD thesis. Therefore the first objective was to develop an in vitro model system that mimics human mineralised bone matrix to the highest possible extent to examine the specific biological question, how the human bone matrix influences breast cancer cell behaviour. Thus, primary human osteoblasts were isolated from human bone and cultured under osteogenic conditions. Upon ammonium hydroxide treatment, a cell-free intact mineralised human bone matrix was left behind. Analyses revealed a similar protein and mineral composition of the decellularised osteoblast matrix to human bone. Seeding of a panel of breast cancer cells onto the bone mimicking matrix as well as reference substrates like standard tissue culture plastic and collagen coated tissue culture plastic revealed substrate specific differences of cellular behaviour. Analyses of attachment, alignment, migration, proliferation, invasion, as well as downstream signalling pathways showed that these cellular properties were influenced through the osteoblast matrix. The second objective of this PhD project was the development of a human ectopic bone model in NOD/SCID mice using medical grade polycaprolactone tricalcium phosphate (mPCL-TCP) scaffold. Human osteoblasts and mesenchymal stem cells were seeded onto an mPCL-TCP scaffold, fabricated using a fused deposition modelling technique. After subcutaneous implantation in conjunction with the bone morphogenetic protein 7, limited bone formation was observed due to the mechanical properties of the applied scaffold and restricted integration into the soft tissue of flank of NOD/SCID mice. Thus, a different scaffold fabrication technique was chosen using the same polymer. Electrospun tubular scaffolds were seeded with human osteoblasts, as they showed previously the highest amount of bone formation and implanted into the flanks of NOD/SCID mice. Ectopic bone formation with sufficient vascularisation could be observed. After implantation of breast cancer cells using a polyethylene glycol hydrogel in close proximity to the newly formed bone, macroscopic communication between the newly formed bone and the tumour could be observed. Taken together, this PhD project showed that bone tissue engineering platforms could be used to develop an in vitro and in vivo model system to study cancer cell colonisation in the bone microenvironment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The larval form of the Greater Wax Moth (Galleria mellonella) was evaluated as a model system for the study of the acute in vivo toxicity of 1-alkyl-3-methylimidazolium chloride ionic liquids. 24-h median lethal dose (LD50) values for nine of these ionic liquids bearing alkyl chain substituents ranging from 2 to 18 carbon atoms were determined. The in vivo toxicity of the ionic liquids was found to correlate directly with the length of the alkyl chain substituent, and the pattern of toxicity observed was in accordance with previous studies of ionic liquid toxicity in other living systems, including a characteristic toxicity ‘cut-off’ effect. However, G. mellonella appeared to be more susceptible to the toxic effects of the ionic liquids tested, possibly as a result of their high body fat content. The results obtained in this study indicate that G. mellonella represents a sensitive, reliable and robust in vivo model organism for the evaluation of ionic liquid toxicity.