982 resultados para in vitro metabolism


Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is high interest in the natural products properties due to their use in popular medicine. Agaricus blazei Murrill ss. Heinem. (Ab) is native to Brazil and has been widely disseminated because its medicinal properties. In the present study, the genotoxic and antigenotoxic potential of Ab extracts were investigated using the comet assay. The cells utilized were the non drug-metabolizing line CHO-k1 (Chinese hamster ovary) and the drug-metabolizing line HTC (rat hepatoma). Cells were treated for 3 h in the absence of fetal bovain serum (FBS) with methanolic, hexanic and n-butanolic extracts at 50 μg/ml and 0.75% aqueous extract to test for genotoxicity. Antigenotoxic effects of extracts were determined in cells exposed to the DNA damage inducing agent ethyl methanesulfonate under simultaneous or simultaneous with 1 h pre-incubation conditions. The extracts did not show genotoxicity in HTC, while they were genotoxic in CHO-k1. No antigenotoxic effect was observed with any extract under any condition. These results demonstrate that the metabolism in presence or in absence has a direct influence on the genotoxicity of these extracts. © 2006 The Japan Mendel Society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tetrahydrofuran lignans represent a well-known group of phenolic compounds capable of acting as antiparasitic agents. In the search for new medicines for the treatment of Chagas disease, one promising compound is grandisin which has shown significant activity on trypomastigote forms of Trypanosoma cruzi. In this work, the in vitro metabolism of grandisin was studied in the pig cecum model and by biomimetic phase I reactions, aiming at an ensuing a preclinical pharmacokinetic investigation. Although grandisin exhibited no metabolization by the pig microbiota, one putative metabolite was formed in a biomimetic model using Jacobsen catalyst. The putative metabolite was tested against T. cruzi revealing loss of activity in comparison to grandisin.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Testosterone (TES) 6-β-hydroxylation is a significant metabolic step in the biotransformation of TES in human liver microsomes and reflects cytochrome P450 (CYP) 3A4/5 specific metabolic activity. Several CYP3A enzymes have been annotated in the horse genome, but functional characterization is missing. This descriptive study investigates TES metabolism in the horse liver in vitro and the qualitative contribution of three CYP3A isoforms of the horse. Metabolism of TES was investigated by using equine hepatocyte primary cultures and liver microsomes. Chemical inhibitors were used to determine the CYPs involved in TES biotransformation in equine microsomes. Single CYPs 3A89, 3A94, and 3A95, recombinantly expressed in V79 hamster lung fibroblasts, were incubated with TES and the fluorescent metabolite 7-benzyloxy-4-trifluoromethylcoumarin (BFC). The effect of ketoconazole and troleandomycin was evaluated on single CYPs. Testosterone metabolites were analyzed by HPLC and confirmed by GC/MS. In hepatocyte primary cultures, the most abundant metabolite was androstenedione (AS), whereas in liver microsomes, 6-β-hydroxytestosterone showed the largest peak. Formation of 6-β-hydroxytestosterone and 11-β-hydroxytestosterone in liver microsomes was inhibited by ketoconazole, troleandomycin, and quercetin. Equine recombinant CYP3A95 catalyzed 11-β-hydroxylation of testosterone (TES). Metabolism of BFC was significantly inhibited by ketoconazole in CYP3A95, whereas troleandomycin affected the activities of CYP3A94 and CYP3A95. Both inhibitors had no significant effect on CYP3A89. Metabolic reactions and effects of inhibitors differed between the equine CYP3A isoforms investigated. This has to be considered in future in vitro studies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The metabolism of the antitumor agent 6-thioguanine (TG, NSC-752) by rat liver was studied in vitro. Livers from adult male Sprague-Dawley rats were homogenized and the "liver homogenate" was subjected to differential centrifugation to obtain the "10,000 x g pellet", the "post-mitochondrial fraction", the "cytosol fraction", and the "microsomes". The homogenity of each fraction was estimated by appropriate marker enzyme assays. To delineate the in vitro metabolism of TG by rat liver, 0.2 mM of {8-('14)C}TG was incubated with different subcellular fractions in KCl-Tris-MgCl(,2) buffer, pH 7.4 at 37(DEGREES). The metabolites formed were identified by chromatography, UV spectrometry, as well as mass spectrometry. After a 1 hr incubation, TG was metabolized by the liver homogenate, the 10,000 x g pellet and the post-mitochondrial fraction mainly to 6-thioguanosine (TGR), accompanied by varying lesser amounts of 6-thiouric acid (TUA), allantoin, guanine-6-sulfinic acid (G-SO(,2)H) and an unknown product. In comparison, the cytosal fraction converted TG almost entirely to TGR and TUA in equal amounts. The formation of TGR from TG was limited by the endogenous supply of ribose-1-phosphate. With the microsomal fraction, however, TG was metabolized significantly to G-SO(,2)H and the unknown, accompanied with some TGR. After a 5 hr incubation the metabolism of TG was changed to favor the catabolic route, yielding mostly TUA in the post-mitochondrial and cytosol fractions; but mainly allantoin in the liver homogenate fraction. The kinetic studies of TG metabolism by the subcellar fractions indicated that the formation of TGR served as a depot form of TG. The level of TGR decreased when the catabolism of TG became prominent. The oxidation of TG to GSO(,2)H mediated by the hepatic microsomes represented a new catabolic pathway of TG. This GSO(,2)H, under acidic conditions, readily decomposes to guanine and inorganic sulfate. In the presence of reduced glutathione in Tris buffer, pH 7.8 at 25(DEGREES), GSO(,2)H is adducted to glutathione chemically to form S-(2-amino-purin-6-yl) glutathione and conceivably, inorganic sulfate. Therefore, the formation of GSO(,2)H from TG might have implication in the desulfuration mechanism of TG. On the other hand, the unknown formed from TG by the action of the microsomal enzymes appeared to be a TG conjugate. However, it is neither a glutathione, a glucuronide, nor a ribose conjugate. Additionally, the deamination of TG by guanine deaminase (E.C.3.5.4.3) isolated from rat liver was also investigated. TG is a poorer substrate (Km = 4.8 x 10('-3)M) for guanine deaminase than that of guanine (Km = 4.7 x 10('-6)M) at pH 7.25, optimal pH for TG as a substrate. TG is also a competitive inhibitor of guanine for guanine deaminase, with a ki of 2.2 x 10('-4)M. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Testosterone hydroxylation was investigated in human, canine and equine liver microsomes and in human and canine single CYPs. The contribution of the CYP families 1, 2 and 3 was studied using chemical inhibitors. Testosterone metabolites were analyzed by HPLC. The metabolites androstenedione, 6β- and 11β-hydroxytestosterone were found in microsomes of all species, but the pattern of metabolites varied within species. Androstenedione was more prominent in the animal species, and an increase over time was seen in equines. Testosterone hydroxylation was predominantly catalyzed by the CYP3A subfamily in all three species. While CYP2C9 did not metabolise testosterone, the canine ortholog CYP2C21 produced androstenedione. Quercetin significantly inhibited 6β- and 11β-hydroxytestosterone in all species investigated, suggesting that CYP2C8 is involved in testosterone metabolism, whereas sulfaphenazole significantly inhibited the formation of 6β- and 11β-hydroxytestosterone in human microsomes, at 60min in equine microsomes, but not in canine microsomes. A contribution of CYP2B6 in testosterone metabolism was only found in human and equine microsomes. Inhibition of 17β-hydroxysteroid dehydrogenase 2 indicated its involvement in androstenedione formation in humans, increased androstenedione formation was found in equines and no involvement in canines. These findings provide improved understanding of differences in testosterone biotransformation in animal species.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: To investigate cytochrome P450 (CYP) enzymes involved in metabolism of racemic and S-ketamine in various species and to evaluate metabolic interactions of other analgesics with ketamine. SAMPLE POPULATION: Human, equine, and canine liver microsomes. PROCEDURES: An analgesic was concurrently incubated with luminogenic substrates specific for CYP 3A4 or CYP 2C9 and liver microsomes. The luminescence signal was detected and compared with the signal for negative control samples. Ketamine and norketamine enantiomers were determined by use of capillary electrophoresis. RESULTS: A concentration-dependent decrease in luminescence signal was detected for ibuprofen and diclofenac in the assay for CYP 2C9 in human and equine liver microsomes but not in the assay for CYP 3A4 and methadone or xylazine in any of the species. Coincubation of methadone or xylazine with ketamine resulted in a decrease in norketamine formation in equine and canine liver microsomes but not in human liver microsomes. In all species, norketamine formation was not affected by ibuprofen, but diclofenac reduced norketamine formation in human liver microsomes. A higher rate of metabolism was detected for S-ketamine in equine liver microsomes, compared with the rate for the S-enantiomer in the racemic mixture when incubated with any of the analgesics investigated. CONCLUSIONS AND CLINICAL RELEVANCE: Enzymes of the CYP 3A4 family and orthologs of CYP 2C9 were involved in ketamine metabolism in horses, dogs, and humans. Methadone and xylazine inhibited in vitro metabolism of ketamine. Therefore, higher concentrations and diminished clearance of ketamine may cause adverse effects when administered concurrently with other analgesics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As principais propriedades farmacológicas da Casearia sylvestris, uma espécie de árvore cujas folhas são utilizadas na medicina popular, já foram descritas na literatura. Recentemente foi demonstrada a potente atividade citotóxica in vitro da casearina X (CAS X), o diterpeno clerodânico majoritário isolado das folhas de C. sylvestris, contra linhagens de células tumorais humanas. Apesar dos resultados promissores, sua potente atividade citotóxica in vitro não pode ser extrapolada para uma potente atividade in vivo, a menos que possua boa biodisponibilidade e duração desejável do seu efeito. Tendo em vista que o avanço nas pesquisas de produtos naturais requer a avaliação pré-clínica de propriedades farmacocinéticas, no presente trabalho foi realizada a caracterização in vitro do metabolismo e da absorção intestinal da CAS X, com o objetivo de prever sua biodisponibilidade in vivo. Para os estudos de metabolismo in vitro, foi utilizado o modelo microssomal hepático de ratos e de humanos. Foi desenvolvido um método analítico para a quantificação da CAS X em microssomas, empregando a precipitação de proteínas com acetonitrila no preparo das amostras e a cromatografia líquida de alta eficiência para as análises. O método foi validado de acordo com os guias oficiais da Agência Nacional de Vigilância Sanitária e da European Medicine Agency (EMA). A CAS X demonstrou ser substrato para as reações de hidrólise mediada pelas carboxilesterases (CES) e apresentou um perfil cinético de Michaelis-Menten. Foram estimados os parâmetros de Vmax e KM, demonstrando que o clearance intrínseco em microssomas hepático de humanos foi 1,7 vezes maior que o de ratos. O clearance hepático foi estimado por extrapolação in vitro-in vivo, resultando em mais de 90% do fluxo sanguíneo hepático em ambas as espécies. Um estudo qualitativo para a pesquisa de metabólitos foi feito utilizando espectrometria de massas, pelo qual foi possível sugerir a formação da casearina X dialdeído como produto de metabolismo. Nos estudos de absorção intestinal in vitro foi utilizado o modelo de monocamadas de células Caco-2. Um método analítico por cromatografia líquida acoplada a espectrometria de massas foi desenvolvido e validado de acordo com o EMA, para as etapas de quantificação da CAS X no sistema de células. Os parâmetros cinéticos de permeabilidade aparente absortiva e secretória da CAS X foram estimados em um sistema celular, no qual a atividade hidrolítica da CES foi inibida. Assim, a CAS X foi capaz de permear a monocamada de células Caco-2, provavelmente por transporte ativo, sem a ocorrência de efluxo, mas com significativa retenção do composto dentro das células. Em conjunto, os ensaios in vitro realizados demonstraram a susceptibilidade da CAS X ao metabolismo de primeira passagem, como substrato para as CES específicas expressas no fígado e intestino.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The forensic toxicologist faces challenges in the detection of drugs and poisons in biological samples due to transformations which occur both during life and after death. For example, changes can result from drug metabolism during life or from the use of formalin solution for post mortem embalming purposes. The former requires the identification of drug metabolites and the latter the identification of chemical reaction products in order to know which substances had been administered. The work described in this thesis was aimed at providing ways of tackling these challenges and was divided into two parts. Part 1 investigated the use of in vitro drug metabolism by human liver microsomes (HLM) to obtain information on drug metabolites and Part 2 investigated the chemical reactions of drugs and a carbamate pesticide with formalin solution and formalin-blood. The initial aim of part I was to develop an in vitro metabolism method using HLM, based on a literature review of previous studies of this type. MDMA was chosen as a model compound to develop the HLM method because its metabolism was known and standards of its metabolites were commercially available. In addition, a sensitive and selective method was developed for the identification and quantitation of hydrophilic phase I drug metabolites using LC/MS/MS with a conventional reverse-phase (C18) column. In order to obtain suitable retention factors for polar drug metabolites on this column, acetyl derivatives were evaluated for converting the metabolites to more lipophilic compounds and an optimal separation system was developed. Acetate derivatives were found to be stable in the HPLC mobile phase and to provide good chromatographic separation of the target analytes. In vitro metabolism of MDMA and, subsequently, of other drugs involved incubation of 4 µg drug substance in pH 7.4 buffer with an NADPH generating system (NGS) at 37oC for 90 min with addition of more NGS after 30 min. The reaction was stopped at 90 min by the addition of acetonitrile before extraction of the metabolites. Acetate derivatives of MDMA metabolites were identified by LC/MS/MS using multiple reaction monitoring (MRM). Three phase I metabolites (both major and minor metabolites) of MDMA were detected in HLM samples. 3,4-dihydroxy-methamphetamine and 4-hydroxy-3-methoxymethamphetamine were found to be major metabolites of MDMA whereas 3,4-methylenedioxyamphetamine was found to be a minor metabolite. Subsequently, ten MDMA positive urines were analysed to compare the metabolite patterns with those produced by HLM. An LC/MS method for MDMA and its metabolites in urine samples was developed and validated. The method demonstrated good linearity, accuracy and precision and insignificant matrix effects, with limits of quantitation of 0.025 µg/ml. Moreover, derivatives of MDMA and its metabolites were quantified in all 10 positive human urine samples. The urine metabolite pattern was found to be similar to that from HLM. The second aim of Part 1 was to use the HLM system to study the metabolism of some new psychoactive substances, whose misuse worldwide has necessitated the development of analytical methods for these drugs in biological specimens. Methylone and butylone were selected as representative cathinones and para-methoxyamphetamine (PMA) was chosen as a representative ring-substituted amphetamine, because of the involvement of these drugs in recent drug-related deaths, because of a relative lack of information on their metabolism, and because reference standards of their metabolites were not commercially available. An LC/MS/MS method for the analysis of methylone, butylone, PMA and their metabolites was developed. Three phase I metabolites of methylone and butylone were detected in HLM samples. Ketone reduction to β-OH metabolites and demethylenation to dihydroxy-metabolites were found to be major phase I metabolic pathways of butylone and methylone whereas N-demethylation to nor-methylone and nor-butylone were found to be minor pathways. Also, demethylation to para-hydroxyamphetamine was found to be a major phase I metabolic pathway of PMA whereas β-hydroxylation to β-OH-PMA was found to be a minor pathway. Formaldehyde is used for embalming, to reduce decomposition and preserve cadavers, especially in tropical countries such as Thailand. Drugs present in the body can be exposed to formaldehyde resulting in decreasing concentrations of the original compounds and production of new substances. The aim of part II of the study was to evaluate the in vitro reactions of formaldehyde with selected drug groups including amphetamines (amphetamine, methamphetamine and MDMA), benzodiazepines (alprazolam and diazepam), opiates (morphine, hydromorphone, codeine and hydrocodone) and with a carbamate insecticide (carbosulfan). The study would identify degradation products to serve as markers for the parent compounds when these were no longer detectable. Drugs standards were spiked in 10% formalin solution and 10% formalin blood. Water and whole blood without formalin were used for controls. Samples were analysed by LC/MS/MS at different times from the start, over periods of up to 30 days. Amphetamine, methamphetamine and MDMA were found to rapidly convert to methamphetamine, DMA and MDDMA respectively, in both formalin solution and formalin blood, confirming the Eschweiler-Clarke reaction between amine-containing compounds and formaldehyde. Alprazolam was found to be unstable whereas diazepam was found to be stable in both formalin solution and water. Both were found to hydrolyse in formalin solution and to give open-ring alprazolam and open-ring diazepam. Other alprazolam conversion products attached to paraformaldehyde were detected in both formalin solution and formalin blood. Morphine and codeine were found to be more stable than hydromorphone and hydrocodone in formalin solution. Conversion products of hydromorphone and hydrocodone attached to paraformaldehyde were tentatively identified in formalin solution. Moreover, hydrocodone and hydromorphone rapidly decreased within 24 h in formalin blood and could not be detected after 7 days. Carbosulfan was found to be unstable in formalin solution and was rapidly hydrolysed within 24 h, whereas in water it was stable up to 48 h. Carbofuran was the major degradation product, plus smaller amounts of other products, 3-ketocarbofuran and 3-hydrocarbofuran. By contrast, carbosulfan slowly hydrolysed in formalin-blood and was still detected after 15 days. It was concluded that HLM provide a useful tool for human drug metabolism studies when ethical considerations preclude their controlled administration to humans. The use of chemical derivatisation for hydrophilic compounds such as polar drug metabolites for analysis by LC/MS/MS with a conventional C18 column is effective and inexpensive, and suitable for routine use in the identification and quantitation of drugs and their metabolites. The detection of parent drugs and their metabolites or conversion and decomposition products is potentially very useful for the interpretation of cases in forensic toxicology, especially when the original compounds cannot be observed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Estrogen receptor (ER)-β has been shown to possess a tumor suppressive effect, and is a potential target for cancer therapy. Using gene-expression meta-analysis of human malignant pleural mesothelioma, we identified an ESR2 (ERβ coding gene) signature. High ESR2 expression was strongly associated with low succinate dehydrogenase B (SDHB) (which encodes a mitochondrial respiratory chain complex II subunit) expression. We demonstrate that SDHB loss induced ESR2 expression, and that activated ERβ, by over-expression or by selective agonist stimulation, negatively affected oxidative phosphorylation compromising mitochondrial complex II and IV activity. This resulted in reduced mitochondrial ATP production, increased glycolysis dependence and impaired cell proliferation. The observed in vitro effects were phenocopied in vivo using a selective ERβ agonist in a mesothelioma mouse model. On the whole, our data highlight an unforeseen interaction between ERβ-mediated tumor suppression and energy metabolism that may be exploited to improve on the therapy for clinical management of malignant mesothelioma.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nutrition affects bone health throughout life. To optimize peak bone mass development and maintenance, it is important to pay attention to the dietary factors that enhance and impair bone metabolism. In this study, the in vivo effects of inorganic dietary phosphate and the in vitro effects of bioactive tripeptides, IPP, VPP and LKP were investigated. Dietary phosphate intake is increased through the use of convenience foods and soft drinks rich in phosphate-containing food additives. Our results show that increased dietary phosphate intake hinders mineral deposition in cortical bone and diminishes bone mineral density (BMD) in the aged skeleton in a rodent model (Study I). In the growing skeleton (Study II), increased phosphate intake was observed to reduce bone material and structural properties, leading to diminished bone strength. Studies I and II revealed that a low Ca:P ratio has negative effects on the mature and growing rat skeleton even when calcium intake is sufficient. High dietary protein intake is beneficial for bone health. Protein is essential for bone turnover and matrix formation. In addition, hydrolysis of proteins in the gastrointestinal tract produces short peptides that possess a biological function beyond that of being tissue building blocks. The effects of three bioactive tripeptides, IPP, VPP and LKP, were assessed in short- and long-term in vitro experiments. Short-term treatment (24 h) with tripeptide IPP, VPP or LKP influenced osteoblast gene expression (Study III). IPP in particular, regulates genes associated with cell differentiation, cell growth and cell signal transduction. The upregulation of these genes indicates that IPP enhances osteoblast proliferation and differentiation. Long-term treatment with IPP enhanced osteoblast gene expression in favour of bone formation and increased mineralization (Study IV). The in vivo effects of IPP on osteoblast differentiation might differ since eating frequency drives food consumption, and protein degradation products, such as bioactive peptides, are available periodically, not continuously as in this study. To sum up, Studies I and II raise concern about the appropriate amount of dietary phosphate to support bone health as excess is harmful. Studies III and IV in turn, support findings of the beneficial effects of dietary protein on bone and provide a mechanistic explanation since cell proliferation and osteoblast function were improved by treatment with bioactive tripeptide IPP.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cytochrome P450 1A2 (CYP1A2) is one of the major metabolizing enzymes. The muscle relaxant tizanidine is a selective substrate of CYP1A2, and the non-steroidal anti-inflammatory drug (NSAID) rofecoxib was thought to modestly in-hibit it. Cases suggesting an interaction between tizanidine and rofecoxib had been reported, but the mechanism was unknown. Also other NSAIDs are often used in combination with muscle relaxants. The aims of this study were to investigate the effect of rofecoxib, several other NSAIDs and female sex steroids on CYP1A2 ac-tivity in vitro and in vivo, and to evaluate the predictability of in vivo inhibition based on in vitro data. In vitro, the effect of several NSAIDs, female sex steroids and model inhibitors on CYP1A2 activity was studied in human liver microsomes, without and with preincubation. In placebo controlled, cross-over studies healthy volunteers ingested a single dose of tizanidine after a pretreament with the inhibitor (rofecoxib, tolfenamic acid or celecoxib) or placebo. Plasma (and urine) concentrations of tizanidine and its metabolites were measured, and the pharmacodynamic effects were recorded. A caffeine test was also performed. In vitro, fluvoxamine, tolfenamic acid, mefenamic acid and rofecoxib potently in-hibited CYP1A2. Ethinylestradiol, celecoxib, desogestrel and zolmitriptan were moderate, and etodolac, ciprofloxacin, etoricoxib and gestodene were weak inhibi-tors of CYP1A2. At 100 µM, other tested NSAIDs and steroids inhibited CYP1A2 less than 35%. Rofecoxib was found to be a mechanism-based inhibitor of CYP1A2. In vivo, rofecoxib greatly increased the plasma concentrations (over ten-fold) and the pharmacodynamic effects of tizanidine. Also the metabolism of caf-feine was impaired by rofecoxib. Despite the relatively strong in vitro CYP1A2 inhibitory effects, tolfenamic acid and celecoxib did not have a significant effect on tizanidine and caffeine concentrations in humans. Competitive inhibition model and the free plasma concentration of the inhibitor predicted well the effect of fluvoxam-ine and the lack of effect of tolfenamic acid and celecoxib on tizanidine concentra-tions in humans, and mechanism-based inhibition model explained the effects of rofecoxib. However, the effects of ciprofloxacin and oral contraceptives were un-derestimated from the in vitro data. Rofecoxib is a potent mechanism-based inhibitor of CYP1A2 in vitro and in vivo. This mechanism may be involved in the adverse cardiovascular effects of rofecoxib. Tolfenamic acid and celecoxib seem to be safe in combination with tizanidine, but mefenamic acid might have some effect on tizanidine concentrations in vivo. Con-sidering the mechanism of inhibition, and using the free plasma concentration of the inhibitor, many but not all CYP1A2 interactions can be predicted from in vitro data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous studies from this laboratory have shown that CNS myelin is phagocytized and metabolized by cultured rat macrophages to a much larger extent when myelin is pretreated with serum containing antibodies to myelin constituents than when it is left untreated or pretreated with non-specific serum. In this study the effect of cerebrospinal fluid (CSF) from rabbits with experimental allergic encephalomyelitis (EAE) in promoting myelin phagocytosis was examined. Fourteen rabbits were immunized with purified myelin in Freund's complete adjuvant, seven of which developed clinical EAE symptoms. Serum and CSF were collected from EAE and control rabbits, and the CSF was centrifuged to remove cells. Sera and CSF from these rabbits and from Freund's adjuvant-immunized controls and untreated controls were measured for IgG content by radial diffusion assay, their myelin antibody characteristics were analyzed by immunoblots, and the ability of these serum and CSF samples to promote myelin phagocytosis when used for myelin opsonization was examined. The ability of a CSF sample to enhance radioactive myelin uptake and phagocytosis by cultured macrophages as measured by the appearance of radioactive cholesterol ester was linearly proportional to its total IgG titer, and correlated approximately both with clinical symptoms of the animal and the presence of antibody against the myelin constituents myelin basic protein, proteolipid protein, and galactocerebroside. The cholesterol esterification activities of EAE sera correlated to a lesser extent with IgG levels and clinical symptoms.(ABSTRACT TRUNCATED AT 250 WORDS)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A study has been carried out to investigate whether the action of triclabendazole (TCBZ) against Fasciola hepatica is altered by inhibition of drug metabolism. The cytochrome P450 (CYP 450) enzyme pathway was inhibited using ketoconazole (KTZ) to see whether a TCBZ-resistant isolate could be made more sensitive to TCBZ action. The Oberon TCBZ-resistant and Cullompton TCBZ-susceptible isolates were used for these experiments. The CYP 450 system was inhibited by a 2-h pre-incubation in ketoconazole (40 mu M), then incubated for a further 22 h in NCTC medium containing either KTZ, KTZ+nicotinamide adenine dinucleotide phosphate (NADPH) (1 nM), KTZ+NADPH+TCBZ (15 mu g/ml), or KTZ+NADPH+triclabendazole sulphoxide (TCBZ. SO; 15 mu g/ml). Changes to fluke ultrastructure following drug treatment and metabolic inhibition were assessed using transmission electron microscopy. After treatment with either TCBZ or TCBZ. SO on their own, there was greater disruption to the TCBZ-susceptible than TCBZ-resistant isolate. However, co-incubation with KTZ+TCBZ, but more particularly KTZ+TCBZ. SO, led to more severe changes to the TCBZ-resistant isolate than with each drug on its own: in the syncytium, for example, there was severe swelling of the basal infolds and their associated mucopolysaccharide masses, accompanied by an accumulation of secretory bodies just below the apex. Golgi complexes were greatly reduced or absent in the tegumental cells and the synthesis, production, and transport of secretory bodies were badly disrupted. With the TCBZ-susceptible Cullompton isolate, there was limited potentiation of drug action. The results support the concept of altered drug metabolism in TCBZ-resistant flukes and this process may play a role in the development of drug resistance.