967 resultados para in vitro diffusion assays
Resumo:
Efficient and effective growth factor (GF) delivery is an ongoing challenge for tissue regeneration therapies. The accurate quantification of complex molecules such as GFs, encapsulated in polymeric delivery devices, is equally critical and just as complex as achieving efficient delivery of active GFs. In this study, GFs relevant to bone tissue formation, vascular endothelial growth factor (VEGF) and bone morphogenetic protein 7 (BMP-7), were encapsulated, using the technique of electrospraying, into poly(lactic-co-glycolic acid) microparticles that contained poly(ethylene glycol) and trehalose to assist GF bioactivity. Typical quantification procedures, such as extraction and release assays using saline buffer, generated a significant degree of GF interactions, which impaired accurate assessment by enzyme-linked immunosorbent assay (ELISA). When both dry BMP-7 and VEGF were processed with chloroform, as is the case during the electrospraying process, reduced concentrations of the GFs were detected by ELISA; however, the biological effect on myoblast cells (C2C12) or endothelial cells (HUVECs) was unaffected. When electrosprayed particles containing BMP-7 were cultured with preosteoblasts (MC3T3-E1), significant cell differentiation into osteoblasts was observed up to 3 weeks in culture, as assessed by measuring alkaline phosphatase. In conclusion, this study showed how electrosprayed microparticles ensured efficient delivery of fully active GFs relevant to bone tissue engineering. Critically, it also highlights major discrepancies in quantifying GFs in polymeric microparticle systems when comparing ELISA with cell-based assays.
Resumo:
Various in-vitro chemosensitivity and resistance assays (CSRAs) have been demonstrated to be helpful decision aids for non-neurological tumors. Here, we evaluated the performance characteristics of two CSRAs for glioblastoma (GB) cells. The chemoresponse of fresh GB cells from 30 patients was studied in vitro using the ATP tumor chemoresponse assay and the chemotherapy resistance assay (CTR-Test). Both assay platforms provided comparable results. Of seven different chemotherapeutic drugs and drug combinations tested in vitro, treosulfan plus cytarabine (TARA) was the most effective, followed by nimustine (ACNU) plus teniposide (VM26) and temozolomide (TMZ). Whereas ACNU/VM26 and TMZ have proven their clinical value for malignant gliomas in large randomized studies, TARA has not been successful in newly diagnosed gliomas. This seeming discrepancy between in vitro and clinical result might be explained by the pharmacological behavior of treosulfan. Our results show reasonable agreement between two cell-based CSRAs. They appear to confirm the clinical effectiveness of drugs used in GB treatment as long as pharmacological preconditions such as overcoming the blood-brain barrier are properly considered.
Resumo:
In vitro measurements of skin absorption are an increasingly important aspect of regulatory studies, product support claims, and formulation screening. However, such measurements are significantly affected by skin variability. The purpose of this study was to determine inter- and intralaboratory variation in diffusion cell measurements caused by factors other than skin. This was attained through the use of an artificial (silicone rubber) rate-limiting membrane and the provision of materials including a standard penetrant, methyl paraben (MP), and a minimally prescriptive protocol to each of the 18 participating laboratories. Standardized calculations of MP flux were determined from the data submitted by each laboratory by applying a predefined mathematical model. This was deemed necessary to eliminate any interlaboratory variation caused by different methods of flux calculations. Average fluxes of MP calculated and reported by each laboratory (60 +/- 27 mug cm(-2) h(-1), n = 25, range 27-101) were in agreement with the standardized calculations of MP flux (60 +/- 21 mug cm(-2) h(-1), range 19-120). The coefficient of variation between laboratories was approximately 35% and was manifest as a fourfold difference between the lowest and highest average flux values and a sixfold difference between the lowest and highest individual flux values. Intra-laboratory variation was lower, averaging 10% for five individuals using the same equipment within a single laboratory. Further studies should be performed to clarify the exact components responsible for nonskin-related variability in diffusion cell measurements. It is clear that further developments of in vitro methodologies for measuring skin absorption are required. (C) 2005 Wiley-Liss, Inc.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
We have used in vitro scratch assays to examine the relative contribution of dermal fibroblasts and keratinocytes in the wound repair process and to test the influence of mesenchymal stem cell (MSC) secreted factors on both skin cell types. Scratch assays were established using single cell and co-cultures of L929 fibroblasts and HaCaT keratinocytes, with wound closure monitored via time-lapse microscopy. Both in serum supplemented and serum free conditions, wound closure was faster in L929 fibroblast than HaCaT keratinocyte scratch assays, and in co-culture the L929 fibroblasts lead the way in closing the scratches. MSC-CM generated under serum free conditions significantly enhanced the wound closure rate of both skin cell types separately and in co-culture, whereas conditioned medium from L929 or HaCaT cultures had no significant effect. This enhancement of wound closure in the presence of MSC-CM was due to accelerated cell migration rather than increased cell proliferation. A number of wound healing mediators were identified in MSC-CM, including TGF-beta1, the chemokines IL-6, IL-8, MCP-1 and RANTES, and collagen type I, fibronectin, SPARC and IGFBP-7. This study suggests that the trophic activity of MSC may play a role in skin wound closure by affecting both dermal fibroblast and keratinocyte migration, along with a contribution to the formation of extracellular matrix.
Resumo:
Blood vascular cells and lymphatic endothelial cells (BECs and LECs, respectively) form two separate vascular systems and are functionally distinct cell types or lineages with characteristic gene expression profiles. Interconversion between these cell types has not been reported. Here, we show that in conventional in vitro angiogenesis assays, human BECs of fetal or adult origin show altered gene expression that is indicative of transition to a lymphatic-like phenotype. This change occurs in BECs undergoing tubulogenesis in fibrin, collagen or Matrigel assays, but is independent of tube formation per se, because it is not inhibited by a metalloproteinase inhibitor that blocks tubulogenesis. It is also reversible, since cells removed from 3D tubules revert to a BEC expression profile upon monolayer culture. Induction of the lymphatic-like phenotype is partially inhibited by co-culture of HUVECs with perivascular cells. These data reveal an unexpected plasticity in endothelial phenotype, which is regulated by contact with the ECM environment and/or cues from supporting cells.
Resumo:
As Aeromonas são consideradas patógenos em potenciais para o homem e animais e estão amplamente distribuídas no ambiente sendo a água e os alimentos importantes veículos de transmissão. Muitos estudos têm demonstrado que a patologia causada pela infecção por Aeromonas é complexa e envolvem inúmeros fatores de virulência, dentre eles a aderência, invasão, enterotoxinas, hemolisinas, exoenzimas, sideróforos, flagelos, formação de biofilme e mecanismos de secreção. No presente estudo, analisamos os mecanismos de patogênese mediados por A. caviae e A. hydrophila, avaliando a participação desses microrganismos nos processos de adesão, invasão, persistência intracelular e citotoxidade celular. Foram utilizados ensaios quantitativos in vitro para testar associação, invasão e persistência intracelular em linhagens celulares HEp-2 e/ou T84. A interação de tecidos intestinais de coelho cultivados in vitro (IVOC) com três cepas de A. caviae originárias de fezes diarréicas também foi avaliada. Observamos que 10 (62,5%) das 16 cepas de Aeromonas spp. de diferentes origens, submetidas aos testes de invasão quantitativos foram capazes de invadir células HEp-2 e T84 em 6 horas de incubação. As cepas positivas nos testes de invasão foram submetidas ao teste quantitativo de persistência em células HEp-2 e sobreviveram no ambiente intracelular por 48 e/ou 72 horas sem multiplicação. A interação de três cepas de A. caviae com a mucosa intestinal de coelho ex vivo resultou em aderência, produção de muco e alterações como, intensa vacuolização e drástica desorganização estrutural que levaram a destruição das microvilosidades intestinais. Este estudo demonstrou que subconjuntos de cepas de A. caviae e A. hydrophila de diversas origens, foram capazes de invadir, persistir ou destruir linhagens celulares in vitro. Nosso estudo também evidenciou que cepas de A. caviae causaram expressivas alterações morfológicas que resultaram na destruição de epitélios intestinais de coelho ex vivo. Finalmente, nossos resultados contribuíram para reforçar o potencial patogênico de cepas de Aeromonas, em especial, as de origem vegetal e clínica.
Resumo:
Thymidylate synthase (TS), an essential enzyme for catalyzing the biosynthesis of thymidylate, is a critical therapeutic target in cancer therapy. Recent studies have shown that TS functions as an RNA-binding protein by interacting with two different sequences on its own mRNA, thus, repressing translational efficiency. In this study, peptides binding TS RNA with high affinity were isolated using mRNA display from a large peptide library (>10(13) different sequences). The randomized library was subjected up to twelve rounds of in vitro selection and amplification. Comparing the amino acid composition of the selected peptides (12th round, R12) with those from the initial random library (round zero, R0), the basic and aromatic residues in the selected peptides were enriched significantly, suggesting that these peptide regions might be important in the peptide-TS mRNA interaction. Categorizing the amino acids at each random position based on their physicochemical properties and comparing the distributions with those of the initial random pool, an obvious basic charge characteristic was found at positions 1, 12, 17 and 18, suggesting that basic side chains participate in RNA binding. Secondary structure prediction showed that the selected peptides of R12 pool represented a helical propensity compared with R0 pool, and the regions were rich in basic residues. The electrophoretic gel mobility shift and in vitro translation assays showed that the peptides selected using mRNA display could bind TS RNA specifically and inhibit the translation of TS mRNA. Our results suggested that the identified peptides could be used as new TS inhibitors and developed to a novel class of anticancer agents.
Resumo:
Les nanoparticules (NPs) sont définies comme des particules ayant au moins une dimension comprise entre 1 à 100 nanomètres. Plusieurs études in vitro et in vivo indiquent que les NPs pourraient constituer un risque potentiel pour la santé des personnes les synthétisant ou les manipulant lors de leur incorporation dans d’autres matériaux. La nanotoxicologie est un domaine de recherche émergeant. Les propriétés physico-chimiques particulières des NPs sont responsables d’interférences non spécifiques entre les nanomatériaux et certains des composants des essais in vitro pouvant mener à de faux résultats. L’inhalation a été identifiée comme une voie d’exposition présentant un risque important de toxicité. Dans le cadre de ce projet, nous avons utilisé la lignée de cellules épithéliales alvéolaires humaines, A549. Nous avons étudié chez cette lignée les conséquences de l’exposition aux points quantiques (PQs), NPs d’intérêt pour leurs applications potentielles en médecine (nanovecteur ou nanosonde). La mise au point des conditions expérimentales (interférence entre l’essai LDH et le milieu de culture) a permis de valider les essais de cytotoxicité MTS et LDH en présence des PQs. Nous avons montré que les PQs présentaient une cytotoxicité à court et long terme, et nous avons par la suite étudié un des mécanismes de toxicité potentielle, la mesure du cadmium (Cd2+) libéré des PQs. Nous avons déterminé que la mesure du Cd2+ comportait plusieurs interférences qui invalident cet essai. En conclusion, notre étude a permis d’identifier des interférences qui remettent en question plusieurs conclusions d’études publiées qui n’ont pas vérifié l’existence de telles interférences.
Resumo:
New Pd(II) and Pt(II) complexes [ML2] (HL = a substituted 2,5-dihydro-5-oxo-1H-pyrazolone-1-carbothioamide) have been synthesized by reacting K2MCl4 (M = Pd, Pt) or Pd(OAc)(2) with beta-ketoester thiosemicarbazones. The structures of seven of these complexes were determined by X-ray diffraction. Although all exhibit a distorted square-planar coordination with trans- or (in one case) cis-[MN2S2] kernels, their supramolecular arrangements vary widely from isolated molecules to 3D-networks. The in vitro antitumoral assays performed with two HL ligands and their metal complexes showed significant cytostatic activity for the latter, with the most active [ML2] derivative (a palladium complex) being about sixteen times more active than cis-DDP against the cis-platinum-resistant cell line A2780cisR. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
This study describes the synthesis of a new ruthenium nitrosyl complex with the formula [RuCl(2)NO(BPA)] [BPA = (2-hydroxybenzyl)(2-methylpyridyl)amine ion], which was synthesized and characterized by spectroscopy, cyclic voltammetry, X-ray crystallography, and theoretical calculation data. The biological studies of this complex included in vitro cytotoxic assays, which revealed its activity against two different tumor cell lines (HeLa and Tm5), with efficacy comparable to that of cisplatin, a metal-based drug that is administered in clinical treatment. The in vivo studies showed that [RuCl2NO(BPA)] is effective in reducing tumor mass. Also, our results suggest that the mechanism of action of [RuCl(2)NO(BPA)] includes binding to DNA, causing fragmentation of this biological molecule, which leads to apoptosis. (C) 2011 Elsevier Masson SAS. All rights reserved.
Resumo:
Praziquantel (PZQ) is a pyrazinoisoquinoline anthelmintic that was discovered in 1972 by Bayer Germany. Currently, due to its efficacy, PZQ is the drug of choice against all species of Schistosoma. Although widely used, PZQ exhibits low and erratic bioavailability because of its poor water solubility. Nanostructured lipid carriers (NLC), second-generation solid lipid nanoparticles, were developed in the 1990s to improve the bioavailability of poorly water soluble drugs. The aim of this study was to investigate nanostructured lipid carriers as a strategy to improve the efficacy. of PZQ in S. mansoni treatment. We prepared NLC2 and NLC4 by adding seventy percent glycerol monostearate (GMS) as the solid lipid, 30% oleic acid (OA) as the liquid lipid and two surfactant systems containing either soybean phosphatidylcholine/poloxamer (PC/P-407) or phosphatidylcholine/Tween 60 (PC/T60), respectively. The carriers were characterized by nuclear magnetic resonance, differential scanning calorimetry, thermogravimetric analysis and Fourier transform-infrared spectroscopy. The safety profile was evaluated using red cell hemolysis and in vitro cytotoxicity assays. The results showed that the encapsulation of PZQ in NLC2 or NLC4 improved the safety profile of the drug. Treatment efficacy was evaluated on the S. mansoni BH strain. PZQ-NLC2 and PZQ-NLC4 demonstrated an improved efficacy in comparison with free PZQ. The results showed that the intestinal transport of free PZQ and PZQ-NLC2 was similar. However, we observed that the concentration of PZQ absorbed was smaller when PZQ was loaded in NLC4. The difference between the amounts of absorbed PZQ could indicate that the presence of T60 in the nanoparticles (NLC4) increased the rigid lipid matrix, prolonging release of the drug. Both systems showed considerable in vitro activity against S. mansoni, suggesting that these systems may be a promising platform for the administration of PZQ for treating schistosomiasis.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)