954 resultados para in vitro assay
Resumo:
A culture gill epithelium from seawater-adapted tilapia (Oreochromis niloticus) was developed for testing PAHs and dioxin-like contaminants in seawater. The epithelia consists two to three layers of epithelial cells incorporating both pavement cells and mitochondria-rich cells (MRCs). Polarity and a stable transepithelial resistance (TER) were maintained. and closely resembled those in fish gills in vivo. The tightness (integrity) of the epithelia remained unchanged upon exposure to benzo[a]pyrene (B[a]P). 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and 3,3',4,4',5-pentachlorobiphenyl (PCB#126), while a concentration-dependent response of EROD activity in the epithelia was induced within 18-24 h when the apical side was exposed to these toxicants. The 24 h EC50 of EROD activity was 2.77 x 10(-7) M for PCB#126, 1.85 x 10(-7) M for B[a]P and 7.38 x 10(-10) M for TCDD. showing: that the preparation was not only sensitive to PAHs and dioxin-like compounds, but also able to produce inductive potency of AhR agonists that generally agreed with those derived from other established in vitro and in vivo systems. The results suggest, that the cultured gill epithelia from seawater-adapted tilapia may serve as a simple. rapid and cost-effective tool for assessing exposure and potential effects of toxicants in marine waters. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
“Catch,” a state where some invertebrate muscles sustain high tension over long periods of time with little energy expenditure (low ATP hydrolysis rate) is similar to the “latch” state of vertebrate smooth muscles. Its induction and release involve Ca2+-dependent phosphatase and cAMP-dependent protein kinase, respectively. Molecular mechanisms for catch remain obscure. Here, we describe a quantitative microscopic in vitro assay reconstituting the catch state with proteins isolated from catch muscles. Thick filaments attached to glass coverslips and pretreated with ≈10−4 M free Ca2+ and soluble muscle proteins bound fluorescently labeled native thin filaments tightly in catch at ≈10−8 M free Ca2+ in the presence of MgATP. At ≈10−4 M free Ca2+, the thin filaments moved at ≈4 μm/s. Addition of cAMP and cAMP-dependent protein kinase at ≈10−8 M free Ca2+ caused their release. Rabbit skeletal muscle F-actin filaments completely reproduced the results obtained with native thin filaments. Binding forces >500 pN/μm between thick and F-actin filaments were measured by glass microneedles, and were sufficient to explain catch tension in vivo. Synthetic filaments of purified myosin and twitchin bound F-actin in catch, showing that other components of native thick filaments such as paramyosin and catchin are not essential. The binding between synthetic thick filaments and F-actin filaments depended on phosphorylation of twitchin but not of myosin. Cosedimentation experiments showed that twitchin did not bind directly to F-actin in catch. These results show that catch is a direct actomyosin interaction regulated by twitchin phosphorylation.
Resumo:
The aim of this study was to develop a simple, field-practical, and effective in vitro method for determining the sensitivity of fresh erythrocytic Plasmodium vivax isolates to a range of antimalarials. The method used is a modification of the standard World Health Organization (WHO) microtest for determination of P.falciparum drug sensitivity. The WHO method was modified by removing leukocytes and using a growth medium supplemented with AB(+) serum. We successfully carried out 34 in vitro drug assays on 39 P. vivax isolates collected from the Mae Sod malaria clinic, Tak Province, Thailand. The mean percentage of parasites maturing to schizonts (six or more merozoites) in control wells was 66.5% +/- 5.9% (standard deviation). This level of growth in the control wells enabled rapid microscopic determination (5 min per isolate per drug) of the MICs of chloroquine, dihydroartemisinin, WR238605 (tafenoquine), and sulfadoxine. P. vivax was relatively sensitive to chloroquine (MIC = 160 ng/ml, 50% inhibitory concentration [IC50] = 49.8 ng/ml) and dihydroartemisinin (MIC = 0.5 ng/ml, IC50 = 0.47 ng/ml). The poor response of P. vivax to both tafenoquine (MIC = 14,000 ng/ml, IC50 = 9,739 ng/ml) and sulfadoxine (MIC = 500,000 ng/ml, IC50 = 249,000 ng/ml) was due to the slow action of these drugs and the innate resistance of P. vivax to sulfadoxine. The in vitro assay developed in our study should be useful both for assessing the antimalarial sensitivity of P. vivax populations and for screening new antimalarials in the absence of long-term P. vivax cultures.
An in vitro assay of the degradative activity of a fibrolytic enzyme against various feed substrates
Resumo:
Preclinical investigations can start with preliminary in vitro studies before using animal models. Following this approach, the number of animals used in preclinical acute toxicity testing can be reduced. In this study, we employed an in-house validated in vitro cytotoxicity test based on the Spielmann approach for toxicity evaluation of the lignan grandisin, a candidate anticancer agent, and its major metabolite. the 4-O-demethylgrandisin, by neutral red uptake (NRU) assay, on mouse fibroblasts Balb/c 3T3 cell line. Using different concentrations of grandisin and its major metabolite (2.31; 1.16; 0.58; 0.29; 0.14; 0.07; 0.04; 0.002 mu M) in Balb/c 3T3-A31 NRU cytotoxicity assay, after incubation for 48 h, we obtained IC(50) values for grandisin and its metabolite of 0.078 and 0.043 mu M, respectively. The computed LD(50) of grandisin and 4-O-demethylgrandisin were 617.72 and 429.95 mg/kg, respectively. Both were classified under the Globally Harmonized System as category 4. Since pharmacological and toxicological data are crucial in the developmental stages of drug discovery, using an in vitro assay we demonstrated that grandisin and its metabolite exhibit distinct toxicity profiles. Furthermore, results presented in this work can contribute to reduce the number of animals required in subsequent pharmacological/toxicological studies. (C) 2010 Elsevier GmbH. All rights reserved.
Resumo:
With the implementation of programs to control lymphatic filariasis and soil-transmitted helminths using broad spectrum anthelmintics, including albendazole and ivermectin, there is a need to develop an in vitro assay for detection of drug resistance. This report describes an in vitro assay for measuring the effects of ivermectin and benzimidazoles on the motility of larvae of the hookworm species Ancylostoma ceylanicum, A. caninum, and Necator americanus, and Strongyloides species including Strongyloides stercoralis, and S. ratti. A dose-response relationship was demonstrated with each of the parasite species, with distinct differences observed between the various species. In pilot field testing of the assay with N. americanus larvae recovered from human fecal samples, a dose-response relationship was observed with ivermectin. While the assay has demonstrated the ability to determine drug responsiveness, its usefulness in resistance detection will require correlation with the clinical outcome among individuals infected with parasite strains showing different drug sensitivities.
Resumo:
The present study aimed to establish a sensitive in vitro assay to assess the binding capacity of cat spermatozoa. Cat oocytes and epididymal sperm cells were isolated from gonads and cultured for in vitro fertilization. Before fertilization, the sperm ce
Resumo:
Amphotericin B (AmB), an antifungal agent that presents a broad spectrum of activity, remains the gold standard in the antifungal therapy. However, sometimes the high level of toxicity forbids its clinical use. The aim of this work was to evaluate and compare the efficacy and toxicity in vitro of Fungizon™ (AmB-D) and two new different AmB formulations. Methods: three products were studied: Fungizon™, and two Fungizon™ /Lipofundin™ admixtures, which were diluted through two methods: in the first one, Fungizon™ was previously diluted with water for injection and then, in Lipofundin™ (AmB-DAL); the second method consisted of a primary dilution of AmB-D as a powder in the referred emulsion (AmB-DL). For the in vitro assay, two cell models were used: Red Blood Cells (RBC) from human donors and Candida tropicallis (Ct). The in vitro evaluation (K+ leakage, hemoglobin leakage and cell survival rate-CSR) was performed at four AmB concentrations (from 50 to 0.05mg.L-1). Results: The results showed that the action of AmB was not only concentration dependent, but also cellular type and vehicle kind dependent. At AmB concentrations of 50 mg.L-1, although the hemoglobin leakage for AmB-D was almost complete (99.51), for AmB-DAL and AmB-DL this value tended to zero. The p = 0.000 showed that AmB-D was significantly more hemolytic. Conclusion: The Fungizon™- Lipofundin™ admixtures seem to be the more valuable AmB carrier systems due to their best therapeutic index presented
Resumo:
Licania rigida Benth., Licania tomentosa (Benth.) Fritsch, and Couepia impressa Prance (Chrysobalanaceae family) plants have long been used medicinally by the people from Northeastern Brazil. Crude extracts and infusions of these plants have been applied in the treatment of several conditions such as diabetes and rheumatism, degenerative diseases with involvement of reactive oxygen species (ROS). The aim of this study was to evaluate the aqueous, ethanolic, and hydroethanolic leaves extracts antioxidant capacity of these species, using several in vitro assay systems (reducing power, DPPH● scavenging, the β-carotene linoleate model system and lipid peroxidation inhibition in rat brain homogenate, using thiobarbituric acid reactive substances - TBARS). The oral acute toxicity of aqueous extracts was also evaluated in vivo. Results revealed that these extracts possess a potent reducing power and DPPH scavenging ability, as well as the ability to prevent TBARS formation in rat brain homogenate in a concentration-dependent manner. Regarding in vivo oral acute toxicity of the aqueous species extracts, no toxic effects were observed upon evaluating physiological, hematological and biochemical parameters. The presence of high levels of phenolics and flavonoids was determined mainly in the ethanol extract. However, the C. impressa hydroethanolic extract, fractionated with hexane, chloroform and ethyl acetate for analysis by NMR 1H, showed more efficient results than the reference antioxidant Carduus marianus. The classes of organics compounds were determined were phenolics in the fraction of ethyl acetate and terpenes in chloroform and hexane fractions. The ethil acetate fraction had the highest content of flavonoids and increased scavenging capacity of DPPH●, possibly by the presence of phenolic compounds. Therefore, a detailed investigation of the phytochemical composition and in vivo study of the C. impressa hydroethanolic extract is suggested to characterize the active compounds of the species
Resumo:
The aim of this study was to develop multiparticulate therapeutic systems of alginate (AL) and chitosan (CS) containing triamcinolone (TC) to colonic drug delivery. Multiparticulate systems of AL-CS, prepared by a complex coacervation/ionotropic gelation method, were characterized for morphological and size aspects, swelling degree, encapsulation content and efficiency, in vitro release profile in different environments simulating the gastrointestinal tract (GIT) and in vivo gastrointestinal transit. The systems showed suitable morphological characteristics with particle diameters of approximately 1.6 mm. In simulated gastric environment, at pH 1.2, the capsules presented low degree of swelling and in vitro release of drug. A higher swelling degree was observed in simulated enteric environment, pH 7.5, followed by erosion. Practically all the drug was released after 6 h of in vitro assay. The in vivo analysis of gastrointestinal transit, carried out in rats, showed that the systems passed practically intact through the stomach and did not show the same profile of swelling observed in the in vitro tests. It was possible to verify the presence of capsules in the colonic region of GIT. The results indicate that AL-CS multiparticulate systems can be used as an adjuvant for the preparation of therapeutic systems to colonic delivery of drugs. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
BACKGROUND AND OBJECTIVES: Complement inhibition is considered important in the mechanism of action of intravenous immunoglobulin (IVIG) in a number of inflammatory and autoimmune disorders. The capacity of different IVIG preparations to 'scavenge' activated C3 and thereby inhibit complement activation was assessed by a new in vitro assay. MATERIALS AND METHODS: Diluted human serum as a complement source, with or without addition of different concentrations of IVIG, was incubated in microtitre plates coated with heat-aggregated human IgG. Complement scavenging was measured by detecting reduced C3 binding and determining fluid phase C3b-IgG complex formation. Complement activation induced by the IVIG preparations was measured as C5a formation. RESULTS: All IVIG preparations exhibited a dose-dependent inhibition of C3b deposition, correlating strongly with binding of C3b to fluid-phase IgG, but the extent of complement scavenging varied considerably between different IVIG preparations. At an IVIG concentration of 0.9 mg/ml, the inhibition of C3b deposition ranged from 72 +/- 16% to 22 +/- 4.1%. The reduction of C3b deposition on the complement-activating surface was not due to IVIG-induced complement activation in the fluid phase, as shown by the low C5a formation in the presence of serum. CONCLUSION: In vitro analysis allows comparison of the complement-inhibitory properties of IVIG preparations. The extent of complement scavenging varies between the products.
Resumo:
Telomerase is a specialized reverse transcriptase consisting of both RNA and protein components. Previous characterization of yeast telomerase function in vivo identified four EST (for ever shorter telomeres) genes that, when mutated, result in the phenotypes expected for a defect in telomerase. Consistent with this genetic prediction, the EST2 gene has recently been shown to encode the catalytic component of telomerase. Using an in vitro assay, we show here that telomerase activity is present in extracts prepared from yeast strains carrying est1-Δ, est3-Δ, and cdc13–2est mutations. Therefore, while these three genes are necessary for telomerase function in vivo, they do not encode components essential for core catalytic activity. When Est2p, the one EST gene product found to be essential for catalytic activity, was immunoprecipitated from extracts, the telomerase RNA subunit was also specifically precipitated, supporting the conclusion that these two components are in a stable complex.
Resumo:
In the fission yeast Schizosaccharomyces pombe, the protein kinase Cds1 is activated by the S–M replication checkpoint that prevents mitosis when DNA is incompletely replicated. Cds1 is proposed to regulate Wee1 and Mik1, two tyrosine kinases that inhibit the mitotic kinase Cdc2. Here, we present evidence from in vivo and in vitro studies, which indicates that Cds1 also inhibits Cdc25, the phosphatase that activates Cdc2. In an in vivo assay that measures the rate at which Cdc25 catalyzes mitosis, Cds1 contributed to a mitotic delay imposed by the S–M replication checkpoint. Cds1 also inhibited Cdc25-dependent activation of Cdc2 in vitro. Chk1, a protein kinase that is required for the G2–M damage checkpoint that prevents mitosis while DNA is being repaired, also inhibited Cdc25 in the in vitro assay. In vitro, Cds1 and Chk1 phosphorylated Cdc25 predominantly on serine-99. The Cdc25 alanine-99 mutation partially impaired the S–M replication and G2–M damage checkpoints in vivo. Thus, Cds1 and Chk1 seem to act in different checkpoint responses to regulate Cdc25 by similar mechanisms.