995 resultados para impulsive systems
Resumo:
The article investigates complex impulsive systems in which the so-called controlling systems jumps effect emerges. In particular, this research includes the correctness of the solution to the impulsive control system and approximation lemmas. A 3D model example is provided which illustrates the relevance of the considered approach to the study of complex impulsive systems.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
This article addresses the problem of stability of impulsive control systems whose dynamics are given by measure driven differential inclusions. One important feature concerns the adopted solution which allows the consideration of systems whose singular dynamics do not satisfy the so-called Frobenius condition. After extending the conventional notion of control Lyapounov pair for impulsive systems, some stability conditions of the Lyapounov type are given. Some conclusions follow the outline of the proof of the main result.
Resumo:
In this paper, two models of coalition and income's distribution in FSCS (fuzzy supply chain systems) are proposed based on the fuzzy set theory and fuzzy cooperative game theory. The fuzzy dynamic coalition choice's recursive equations are constructed in terms of sup-t composition of fuzzy relations, where t is a triangular norm. The existence of the fuzzy relations in FSCS is also proved. On the other hand, the approaches to ascertain the fuzzy coalition through the choice's recursive equations and distribute the fuzzy income in FSCS by the fuzzy Shapley values are also given. These models are discussed in two parts: the fuzzy dynamic coalition choice of different units in FSCS; the fuzzy income's distribution model among different participators in the same coalition. Furthermore, numerical examples are given aiming at illustrating these models., and the results show that these models are feasible and validity in FSCS.
Resumo:
In this paper, we study the existence of global solutions for a class of impulsive abstract functional differential equation. An application involving a parabolic system With impulses is considered. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
We solve the problem of steering a three-level quantum system from one eigen-state to another in minimum time and study its possible extension to the time-optimal control problem for a general n-level quantum system. For the three-level system we find all optimal controls by finding two types of symmetry in the problems: ℤ × S3 discrete symmetry and 51 continuous symmetry, and exploiting them to solve the problem through discrete reduction and symplectic reduction. We then study the geometry, in the same framework, which occurs in the time-optimal control of a general n-level quantum system. Copyright ©2007 Watam Press.
Resumo:
A time-varying controllable fault-tolerant field associative memory model and the realization algorithms are proposed. On the one hand, this model simulates the time-dependent changeability character of the fault-tolerant field of human brain's associative memory. On the other hand, fault-tolerant fields of the memory samples of the model can be controlled, and we can design proper fault-tolerant fields for memory samples at different time according to the essentiality of memory samples. Moreover, the model has realized the nonlinear association of infinite value pattern from n dimension space to m dimension space. And the fault-tolerant fields of the memory samples are full of the whole real space R-n. The simulation shows that the model has the above characters and the speed of associative memory about the model is faster.
Resumo:
A design algorithm of an associative memory neural network is proposed. The benefit of this design algorithm is to make the designed associative memory model can implement the hoped situation. On the one hand, the designed model has realized the nonlinear association of infinite value pattern from n dimension space to m dimension space. The result has improved the ones of some old associative memory neural network. On the other hand, the memory samples are in the centers of the fault-tolerant. In average significance the radius of the memory sample fault-tolerant field is maximum.
Resumo:
This paper applies data coding thought, which based on the virtual information source modeling put forward by the author, to propose the image coding (compression) scheme based on neural network and SVM. This scheme is composed by "the image coding (compression) scheme based oil SVM" embedded "the lossless data compression scheme based oil neural network". The experiments show that the scheme has high compression ratio under the slightly damages condition, partly solve the contradiction which 'high fidelity' and 'high compression ratio' cannot unify in image coding system.
Resumo:
First, the compression-awaited data are regarded Lis character strings which are produced by virtual information source mapping M. then the model of the virtual information source M is established by neural network and SVM. Last we construct a lossless data compression (coding) scheme based oil neural network and SVM with the model, an integer function and a SVM discriminant. The scheme differs from the old entropy coding (compressions) inwardly, and it can compress some data compressed by the old entropy coding.
Resumo:
Double weighted neural network; is a kind of new general used neural network, which, compared with BP and RBF network, may approximate the training samples with a move complicated geometric figure and possesses a even greater approximation. capability. we study structure approximate based on double weighted neural network and prove its rationality.
Resumo:
Dynamic Power Management (DPM) is a technique to reduce power consumption of electronic system. by selectively shutting down idle components. In this article we try to introduce back propagation network and radial basis network into the research of the system-level policies. We proposed two PAY policies-Back propagation Power Management (BPPM) and Radial Basis Function Power management (RBFPM) which are based on Artificial Neural Networks (ANN). Our experiments show that the two power management policies greatly lowered the system-level power consumption and have higher performance than traditional Power Management(PM) techniques-BPPM is 1.09-competitive and RBFPM is 1.08-competitive vs. 1.79,145,1.18-competitive separately for traditional timeout PM, adaptive predictive PM and stochastic PM.
Resumo:
Automatic molecular classification of cancer based on DNA microarray has many advantages over conventional classification based on morphological appearance of the tumor. Using artificial neural networks is a general approach for automatic classification. In this paper, Direction-Basis-Function neuron and Priority-Ordered algorithm are applied to neural networks. And the leukemia gene expression dataset is used as an example to testify the classifier. The result of our method is compared to that of SVM. It shows that our method makes a better performance than SVM.