871 resultados para implied volatility, VIX, volatility forecasts, informational efficiency


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Much research has investigated the differences between option implied volatilities and econometric model-based forecasts. Implied volatility is a market determined forecast, in contrast to model-based forecasts that employ some degree of smoothing of past volatility to generate forecasts. Implied volatility has the potential to reflect information that a model-based forecast could not. This paper considers two issues relating to the informational content of the S&P 500 VIX implied volatility index. First, whether it subsumes information on how historical jump activity contributed to the price volatility, followed by whether the VIX reflects any incremental information pertaining to future jump activity relative to model-based forecasts. It is found that the VIX index both subsumes information relating to past jump contributions to total volatility and reflects incremental information pertaining to future jump activity. This issue has not been examined previously and expands our understanding of how option markets form their volatility forecasts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Modeling and forecasting of implied volatility (IV) is important to both practitioners and academics, especially in trading, pricing, hedging, and risk management activities, all of which require an accurate volatility. However, it has become challenging since the 1987 stock market crash, as implied volatilities (IVs) recovered from stock index options present two patterns: volatility smirk(skew) and volatility term-structure, if the two are examined at the same time, presents a rich implied volatility surface (IVS). This implies that the assumptions behind the Black-Scholes (1973) model do not hold empirically, as asset prices are mostly influenced by many underlying risk factors. This thesis, consists of four essays, is modeling and forecasting implied volatility in the presence of options markets’ empirical regularities. The first essay is modeling the dynamics IVS, it extends the Dumas, Fleming and Whaley (DFW) (1998) framework; for instance, using moneyness in the implied forward price and OTM put-call options on the FTSE100 index, a nonlinear optimization is used to estimate different models and thereby produce rich, smooth IVSs. Here, the constant-volatility model fails to explain the variations in the rich IVS. Next, it is found that three factors can explain about 69-88% of the variance in the IVS. Of this, on average, 56% is explained by the level factor, 15% by the term-structure factor, and the additional 7% by the jump-fear factor. The second essay proposes a quantile regression model for modeling contemporaneous asymmetric return-volatility relationship, which is the generalization of Hibbert et al. (2008) model. The results show strong negative asymmetric return-volatility relationship at various quantiles of IV distributions, it is monotonically increasing when moving from the median quantile to the uppermost quantile (i.e., 95%); therefore, OLS underestimates this relationship at upper quantiles. Additionally, the asymmetric relationship is more pronounced with the smirk (skew) adjusted volatility index measure in comparison to the old volatility index measure. Nonetheless, the volatility indices are ranked in terms of asymmetric volatility as follows: VIX, VSTOXX, VDAX, and VXN. The third essay examines the information content of the new-VDAX volatility index to forecast daily Value-at-Risk (VaR) estimates and compares its VaR forecasts with the forecasts of the Filtered Historical Simulation and RiskMetrics. All daily VaR models are then backtested from 1992-2009 using unconditional, independence, conditional coverage, and quadratic-score tests. It is found that the VDAX subsumes almost all information required for the volatility of daily VaR forecasts for a portfolio of the DAX30 index; implied-VaR models outperform all other VaR models. The fourth essay models the risk factors driving the swaption IVs. It is found that three factors can explain 94-97% of the variation in each of the EUR, USD, and GBP swaption IVs. There are significant linkages across factors, and bi-directional causality is at work between the factors implied by EUR and USD swaption IVs. Furthermore, the factors implied by EUR and USD IVs respond to each others’ shocks; however, surprisingly, GBP does not affect them. Second, the string market model calibration results show it can efficiently reproduce (or forecast) the volatility surface for each of the swaptions markets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The low predictive power of implied volatility in forecasting the subsequently realized volatility is a well-documented empirical puzzle. As suggested by e.g. Feinstein (1989), Jackwerth and Rubinstein (1996), and Bates (1997), we test whether unrealized expectations of jumps in volatility could explain this phenomenon. Our findings show that expectations of infrequently occurring jumps in volatility are indeed priced in implied volatility. This has two important consequences. First, implied volatility is actually expected to exceed realized volatility over long periods of time only to be greatly less than realized volatility during infrequently occurring periods of very high volatility. Second, the slope coefficient in the classic forecasting regression of realized volatility on implied volatility is very sensitive to the discrepancy between ex ante expected and ex post realized jump frequencies. If the in-sample frequency of positive volatility jumps is lower than ex ante assessed by the market, the classic regression test tends to reject the hypothesis of informational efficiency even if markets are informationally effective.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Forecasting volatility has received a great deal of research attention, with the relative performances of econometric model based and option implied volatility forecasts often being considered. While many studies find that implied volatility is the pre-ferred approach, a number of issues remain unresolved, including the relative merit of combining forecasts and whether the relative performances of various forecasts are statistically different. By utilising recent econometric advances, this paper considers whether combination forecasts of S&P 500 volatility are statistically superior to a wide range of model based forecasts and implied volatility. It is found that a combination of model based forecasts is the dominant approach, indicating that the implied volatility cannot simply be viewed as a combination of various model based forecasts. Therefore, while often viewed as a superior volatility forecast, the implied volatility is in fact an inferior forecast of S&P 500 volatility relative to model-based forecasts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

For predicting future volatility, empirical studies find mixed results regarding two issues: (1) whether model free implied volatility has more information content than Black-Scholes model-based implied volatility; (2) whether implied volatility outperforms historical volatilities. In this thesis, we address these two issues using the Canadian financial data. First, we examine the information content and forecasting power between VIXC - a model free implied volatility, and MVX - a model-based implied volatility. The GARCH in-sample test indicates that VIXC subsumes all information that is reflected in MVX. The out-of-sample examination indicates that VIXC is superior to MVX for predicting the next 1-, 5-, 10-, and 22-trading days' realized volatility. Second, we investigate the predictive power between VIXC and alternative volatility forecasts derived from historical index prices. We find that for time horizons lesser than 10-trading days, VIXC provides more accurate forecasts. However, for longer time horizons, the historical volatilities, particularly the random walk, provide better forecasts. We conclude that VIXC cannot incorporate all information contained in historical index prices for predicting future volatility.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study examines the information content of alternative implied volatility measures for the 30 components of the Dow Jones Industrial Average Index from 1996 until 2007. Along with the popular Black-Scholes and \model-free" implied volatility expectations, the recently proposed corridor implied volatil- ity (CIV) measures are explored. For all pair-wise comparisons, it is found that a CIV measure that is closely related to the model-free implied volatility, nearly always delivers the most accurate forecasts for the majority of the firms. This finding remains consistent for different forecast horizons, volatility definitions, loss functions and forecast evaluation settings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ph.D. in the Faculty of Business Administration

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multivariate volatility forecasts are an important input in many financial applications, in particular portfolio optimisation problems. Given the number of models available and the range of loss functions to discriminate between them, it is obvious that selecting the optimal forecasting model is challenging. The aim of this thesis is to thoroughly investigate how effective many commonly used statistical (MSE and QLIKE) and economic (portfolio variance and portfolio utility) loss functions are at discriminating between competing multivariate volatility forecasts. An analytical investigation of the loss functions is performed to determine whether they identify the correct forecast as the best forecast. This is followed by an extensive simulation study examines the ability of the loss functions to consistently rank forecasts, and their statistical power within tests of predictive ability. For the tests of predictive ability, the model confidence set (MCS) approach of Hansen, Lunde and Nason (2003, 2011) is employed. As well, an empirical study investigates whether simulation findings hold in a realistic setting. In light of these earlier studies, a major empirical study seeks to identify the set of superior multivariate volatility forecasting models from 43 models that use either daily squared returns or realised volatility to generate forecasts. This study also assesses how the choice of volatility proxy affects the ability of the statistical loss functions to discriminate between forecasts. Analysis of the loss functions shows that QLIKE, MSE and portfolio variance can discriminate between multivariate volatility forecasts, while portfolio utility cannot. An examination of the effective loss functions shows that they all can identify the correct forecast at a point in time, however, their ability to discriminate between competing forecasts does vary. That is, QLIKE is identified as the most effective loss function, followed by portfolio variance which is then followed by MSE. The major empirical analysis reports that the optimal set of multivariate volatility forecasting models includes forecasts generated from daily squared returns and realised volatility. Furthermore, it finds that the volatility proxy affects the statistical loss functions’ ability to discriminate between forecasts in tests of predictive ability. These findings deepen our understanding of how to choose between competing multivariate volatility forecasts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The performance of techniques for evaluating multivariate volatility forecasts are not yet as well understood as their univariate counterparts. This paper aims to evaluate the efficacy of a range of traditional statistical-based methods for multivariate forecast evaluation together with methods based on underlying considerations of economic theory. It is found that a statistical-based method based on likelihood theory and an economic loss function based on portfolio variance are the most effective means of identifying optimal forecasts of conditional covariance matrices.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this paper is to improve option risk monitoring by examining the information content of implied volatility and by introducing the calculation of a single-sum expected risk exposure similar to the Value-at-Risk. The figure is calculated in two steps. First, there is a need to estimate the value of a portfolio of options for a number of different market scenarios, while the second step is to summarize the information content of the estimated scenarios into a single-sum risk measure. This involves the use of probability theory and return distributions, which confronts the user with the problems of non-normality in the return distribution of the underlying asset. Here the hyperbolic distribution is used to describe one alternative for dealing with heavy tails. Results indicate that the information content of implied volatility is useful when predicting future large returns in the underlying asset. Further, the hyperbolic distribution provides a good fit to historical returns enabling a more accurate definition of statistical intervals and extreme events.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The predominant fear in capital markets is that of a price spike. Commodity markets differ in that there is a fear of both upward and down jumps, this results in implied volatility curves displaying distinct shapes when compared to equity markets. The use of a novel functional data analysis (FDA) approach, provides a framework to produce and interpret functional objects that characterise the underlying dynamics of oil future options. We use the FDA framework to examine implied volatility, jump risk, and pricing dynamics within crude oil markets. Examining a WTI crude oil sample for the 2007–2013 period, which includes the global financial crisis and the Arab Spring, strong evidence is found of converse jump dynamics during periods of demand and supply side weakness. This is used as a basis for an FDA-derived Merton (1976) jump diffusion optimised delta hedging strategy, which exhibits superior portfolio management results over traditional methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper analyses the forecastability of stock returns monthly volatility. The forecast obtained from GARCH and AGARCH models with Normal and Student's t errors are evaluated with respect to proxies for the unobserved volatility obtained through sampling at different frequencies. It is found that aggregation of daily multi-step ahead GARCH-type forecasts provide rather accurate predictions of monthly volatility.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper investigates the properties of implied volatility series calculated from options on Treasury bond futures, traded on LIFFE. We demonstrate that the use of near-maturity at the money options to calculate implied volatilities causes less mis-pricing and is therefore superior to, a weighted average measure encompassing all relevant options. We demonstrate that, whilst a set of macroeconomic variables has some predictive power for implied volatilities, we are not able to earn excess returns by trading on the basis of these predictions once we allow for typical investor transactions costs.