992 resultados para implant design


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose:The purpose of this study was to evaluate stress transfer patterns between implant-tooth-connected prostheses comparing rigid and semirigid connectors and internal and external hexagon implants.Materials and Methods:Two models were made of photoelastic resin PL-2, with an internal hexagon implant of 4.00 x 13 mm and another with an external hexagon implant of 4.00 x 13 mm. Three denture designs were fabricated for each implant model, incorporating one type of connection in each one to connect implants and teeth: 1) welded rigid connection; 2) semirigid connection; and 3) rigid connection with occlusal screw. The models were placed in the polariscope, and 100-N axial forces were applied on fixed points on the occlusal surface of the dentures.Results:There was a trend toward less intensity in the stresses on the semirigid connection and solid rigid connection in the model with the external hexagon; among the three types of connections in the model with the internal hexagon implant, the semirigid connection was the most unfavorable one; in the tooth-implant association, it is preferable to use the external hexagon implant.Conclusions:The internal hexagon implant establishes a greater depth of hexagon retention and an increase in the level of denture stability in comparison with the implant with the external hexagon. However, this greater stability of the internal hexagon generated greater stresses in the abutment structures. Therefore, when this association is necessary, it is preferable to use the external hexagon implant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives: To evaluate the effect of insertion torque on micromotion to a lateral force in three different implant designs. Material and methods: Thirty-six implants with identical thread design, but different cutting groove design were divided in three groups: (1) non-fluted (no cutting groove, solid screw-form); (2) fluted (901 cut at the apex, tap design); and (3) Blossomt (Patent pending) (non-fluted with engineered trimmed thread design). The implants were screwed into polyurethane foam blocks and the insertion torque was recorded after each turn of 901 by a digital torque gauge. Controlled lateral loads of 10N followed by increments of 5 up to 100N were sequentially applied by a digital force gauge on a titanium abutment. Statistical comparison was performed with two-way mixed model ANOVA that evaluated implant design group, linear effects of turns and displacement loads, and their interaction. Results: While insertion torque increased as a function of number of turns for each design, the slope and final values increased (Po0.001) progressively from the Blossomt to the fluted to the non-fluted design (M +/- standard deviation [SD] = 64.1 +/- 26.8, 139.4 +/- 17.2, and 205.23 +/- 24.3 Ncm, respectively). While a linear relationship between horizontal displacement and lateral force was observed for each design, the slope and maximal displacement increased (Po0.001) progressively from the Blossomt to the fluted to the non-fluted design (M +/- SD 530 +/- 57.7, 585.9 +/- 82.4, and 782.33 +/- 269.4 mm, respectively). There was negligible to moderate levels of association between insertion torque and lateral displacement in the Blossomt, fluted and non-fluted design groups, respectively. Conclusion: Insertion torque was reduced in implant macrodesigns that incorporated cutting edges, and lesser insertion torque was generally associated with decreased micromovement. However, insertion torque and micromotion were unrelated within implant designs, particularly for those designs showing the least insertion torque.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objectives: To evaluate the effect of insertion torque on micromotion to a lateral force in three different implant designs. Material and methods: Thirty-six implants with identical thread design, but different cutting groove design were divided in three groups: (1) non-fluted (no cutting groove, solid screw-form); (2) fluted (901 cut at the apex, tap design); and (3) Blossomt (Patent pending) (non-fluted with engineered trimmed thread design). The implants were screwed into polyurethane foam blocks and the insertion torque was recorded after each turn of 901 by a digital torque gauge. Controlled lateral loads of 10N followed by increments of 5 up to 100N were sequentially applied by a digital force gauge on a titanium abutment. Statistical comparison was performed with two-way mixed model ANOVA that evaluated implant design group, linear effects of turns and displacement loads, and their interaction. Results: While insertion torque increased as a function of number of turns for each design, the slope and final values increased (Po0.001) progressively from the Blossomt to the fluted to the non-fluted design (M +/- standard deviation [SD] = 64.1 +/- 26.8, 139.4 +/- 17.2, and 205.23 +/- 24.3 Ncm, respectively). While a linear relationship between horizontal displacement and lateral force was observed for each design, the slope and maximal displacement increased (Po0.001) progressively from the Blossomt to the fluted to the non-fluted design (M +/- SD 530 +/- 57.7, 585.9 +/- 82.4, and 782.33 +/- 269.4 mm, respectively). There was negligible to moderate levels of association between insertion torque and lateral displacement in the Blossomt, fluted and non-fluted design groups, respectively. Conclusion: Insertion torque was reduced in implant macrodesigns that incorporated cutting edges, and lesser insertion torque was generally associated with decreased micromovement. However, insertion torque and micromotion were unrelated within implant designs, particularly for those designs showing the least insertion torque.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A minimal marginal bone loss around implants during early healing has been considered acceptable. However, the preservation of the marginal bone is related to soft tissue stability and esthetics. Implant designs and surfaces were evaluated to determine their impact on the behavior of the crestal bone. The purpose of this study is to evaluate histologic marginal bone level changes around early loaded, chemically modified, sandblasted acid-etched-surfaced implants with a machined collar (MC) or no MC (NMC).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This randomised, controlled multicentre trial aimed at comparing two versions of a variable-thread dental implant design to a standard tapered dental implant design in cases of immediate functional loading for 36 months after loading.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE This retrospective observational pilot study examined differences in peri-implant bone level changes (ΔIBL) between two similar implant types differing only in the surface texture of the neck. The hypothesis tested was that ΔIBL would be greater with machined-neck implants than with groovedneck implants. METHOD AND MATERIALS 40 patients were enrolled; n = 20 implants with machined (group 1) and n = 20 implants with a rough, grooved neck (group 2), all placed in the posterior mandible. Radiographs were obtained after loading (at 3 to 9 months) and at 12 to 18 months after implant insertion. Case number calculation with respect to ΔIBL was conducted. Groups were compared using a Brunner-Langer model, the Mann-Whitney test, the Wilcoxon signed rank test, and linear model analysis. RESULTS After the 12- to 18-month observation period, mean ΔIBL was -1.11 ± 0.92 mm in group 1 and -1.25 ± 1.23 mm in group 2. ΔIBL depended significantly on time (P < .001), but not on group. In both groups, mean marginal ΔIBL was significantly less than -1.5 mm. Only insertion depth had a significant influence on the amount of periimplant bone loss (P = .013). Case number estimate testing for a difference between group 1 and 2 with a power of 90% revealed a sample size per group of 1,032 subjects. CONCLUSION ΔIBL values indicated that both implant designs fulfilled implant success criteria, and the modification of implant neck texture had no significant influence on ΔIBL.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

When compared with other arthoplasties, Total Ankle Joint Replacement (TAR) is much less successful. Attempts to remedy this situation by modifying the implant design, for example by making its form more akin to the original ankle anatomy, have largely met with failure. One of the major obstacles is a gap in current knowledge relating to ankle joint force. Specifically this is the lack of reliable data quantifying forces and moments acting on the ankle, in both the healthy and diseased joints. The limited data that does exist is thought to be inaccurate [1] and is based upon simplistic two dimensional discrete and outdated techniques.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The Exeter stems vary in length from 90 to 150 mm. The shorter stems generally have lower offsets. The purpose of this study was to determine if length of stem, with fixed offset, affected rotational stability. Mechanical testing was carried out on 10 implant-cement constructs with 2 loading profiles, rising from chair and stair climbing, at different simulated implant lengths using purpose-built apparatus. This paper presents a mechanism for clinically observed rotational stability and explains the mechanical characteristics required for rotational stability in Exeter femoral stems. © 2012.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Total hip arthroplasty (THA) has a proven clinical record for providing pain relief and return of function to patients with disabling arthritis. There are many successful options for femoral implant design and fixation. Cemented, polished, tapered femoral implants have been shown to have excellent results in national joint registries and long-term clinical series. These implants are usually 150mm long at their lateral aspect. Due to their length, these implants cannot always be offered to patients due to variations in femoral anatomy. Polished, tapered implants as short as 95mm exist, however their small proximal geometry (neck offset and body size) limit their use to smaller stature patients. There is a group of patients in which a shorter implant with a maintained proximal body size would be advantageous. There are also potential benefits to a shorter implant in standard patient populations such as reduced bone removal due to reduced reaming, favourable loading of the proximal femur, and the ability to revise into good proximal bone stock if required. These factors potentially make a shorter implant an option for all patient populations. The role of implant length in determining the stability of a cemented, polished, tapered femoral implant is not well defined by the literature. Before changes in implant design can be made, a better understanding of the role of each region in determining performance is required. The aim of the thesis was to describe how implant length affects the stability of a cemented, polished, tapered femoral implant. This has been determined through an extensive body of laboratory testing. The major findings are that for a given proximal body size, a reduction in implant length has no effect on the torsional stability of a polished, tapered design, while a small reduction in axial stability should be expected. These findings are important because the literature suggests that torsional stability is the major determinant of long-term clinical performance of a THA system. Furthermore, a polished, tapered design is known to be forgiving of cement-implant interface micromotion due to the favourable wear characteristics. Together these findings suggest that a shorter polished, tapered implant may be well tolerated. The effect of a change in implant length on the geometric characteristics of polished, tapered design were also determined and applied to the mechanical testing. Importantly, interface area does play a role in stability of the system; however it is the distribution of the interface and not the magnitude of the area that defines stability. Taper angle (at least in the range of angles seen in this work) was shown not to be a determinant of axial or torsional stability. A range of implants were tested, comparing variations in length, neck offset and indication (primary versus cement-in-cement revision). At their manufactured length, the 125mm implants were similar to their longer 150mm counterparts suggesting that they may be similarly well tolerated in the clinical environment. However, the slimmer cement-in-cement revision implant was shown to have a poorer mechanical performance, suggesting their use in higher demand patients may be hazardous. An implant length of 125mm has been shown to be quite stable and the results suggest that a further reduction to 100mm may be tolerated. However, further work is required. A shorter implant with maintained proximal body size would be useful for the group of patients who are unable to access the current standard length implants due to variations in femoral anatomy. Extending the findings further, the similar function with potential benefits of a shorter implant make their application to all patients appealing.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Purpose: This study aimed to investigate the etiology, clinical manifestations, and treatment options of dental implants fractures through a literature review and to relate a clinical report. Methods: A literature review was performed using the Medline database and this paper describes a case demonstrating the management of implant fracture. Twenty two articles were selected in the present literature review. Results: Nowadays the use of dental implants to rehabilitate completely and partially edentulous patients became the best treatment option; however, this treatment is suitable to failure. The fracture of implant body is a possible complication. The fracture of implant body is a late complication and is related to the failure in implant design or material, non-passive fitting of the prosthetic crown and overloading. Clinically, prosthesis instability and spontaneous bleeding are observed. Three options of treatment have been indicated: complete removal of implant fragment, maintenance of implant fragment, and surface preparation of the fragment with insertion of a new abutment. Conclusion: The literature indicates the complete removal of the fragment as the best treatment option.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Nowadays the number of hip joints arthroplasty operations continues to increase because the elderly population is growing. Moreover, the global life expectancy is increasing and people adopt a more active way of life. For this reasons, the demand of implant revision operations is becoming more frequent. The operation procedure includes the surgical removal of the old implant and its substitution with a new one. Every time a new implant is inserted, it generates an alteration in the internal femur strain distribution, jeopardizing the remodeling process with the possibility of bone tissue loss. This is of major concern, particularly in the proximal Gruen zones, which are considered critical for implant stability and longevity. Today, different implant designs exist in the market; however there is not a clear understanding of which are the best implant design parameters to achieve mechanical optimal conditions. The aim of the study is to investigate the stress shielding effect generated by different implant design parameters on proximal femur, evaluating which ranges of those parameters lead to the most physiological conditions.