931 resultados para impedance matching
Resumo:
Vita.
Resumo:
A new mutual impedance - the receiving mutual impedance - between two normal-mode helical antennas is defined, measured, and theoretically calculated. The variations of the receiving mutual impedance with antenna separation, with frequency, and with excitation source direction are critically investigated. An application of the receiving mutual impedance in direction finding demonstrates its more accurate description of the mutual coupling effect than that using the conventional mutual impedance.
Resumo:
The concept of explaining the use of an old tool like the Smith chart, using modern tools like MATLAB [1] scripts in combination with e-learning facilities, is exemplified by two MATLAB scripts. These display, step by step, the graphical procedure that must be used to solve the double-stub impedance-matching problem. These two scripts correspond to two different possible ways to analyze this matching problem, and they are important for students to learn by themselves.
Resumo:
In this study, energy production for autonomous underwater vehicles is investigated. This project is part of a bigger project called TURTLE. The autonomous vehicles perform oceanic researches at seabed for which they are intended to be kept operational underwater for several months. In order to ful l a long-term underwater condition, powerful batteries are combined with \micro- scale" energy production on the spot. This work tends to develop a system that generates power up to a maximum of 30 W. Latter energy harvesting structure consists basically of a turbine combined with a generator and low-power electronics to adjust the achieved voltage to a required battery charger voltage. Every component is examined separately hence an optimum can be de ned for all, and subsequently also an overall optimum. Di erent design parameters as e.g. number of blades, solidity ratio and cross-section area are compared for di erent turbines, in order to see what is the most feasible type. Further, a generator is chosen by studying how ux distributions might be adjusted to low velocities, and how cogging torque can be excluded by adapted designs. Low-power electronics are con gured in order to convert and stabilize heavily varying three-phase voltages to a constant, recti ed voltage which is usable for battery storage. Clearly, di erent component parameters as maximum power and torque are matched here to increase the overall power generation. Furthermore an overall maximum power is set up for achieving a maximum power ow at load side. Due to among others typical low velocities of about 0.1 to 0.5 m/s, and constructing limits of the prototype, the vast range of components is restricted to only a few that could be used. Hence, a helical turbine is combined in a direct drive mode to a coreless-stator axial- ux permanent-magnet generator, from which the output voltage is adjusted subsequently by a recti er, impedance matching unit, upconverter circuit and an overall control unit to regulate di erent component parameters. All these electronics are combined in a closed-loop design to involve positive feedback signals. Furthermore a theoretical con guration for the TURTLE vehicle is described in this work and a solution is proposed that might be implemented, for which several design tests are performable in a future study.
Resumo:
Aquest projecte es basa en l'estudi, disseny i avaluació d'antenes per a aplicacions RFID a la banda UHF. Les etiquetes RFID estan compostes per un xip i una antena que han de presentar una bona adaptació per a aconseguir màxima transferència de potència. Els dos objectius principals en els diferents fases de disseny de cada antena han estat optimitzar les seves dimensions, i incrementar l'ample de banda.
Resumo:
Aquest projecte es centra en el disseny d’una antena microstrip per a GNSS. Una antena per a GNSS ha de tenir adaptació de impedància d’entrada i polarització circular a dretes, com a principals especificacions, en el rang de 1.15-1.6 GHz. El tipus d’alimentació d’una antena microstrip amb el major ample de banda d’adaptació és l’alimentació mitjançant acoblament per apertura. Si a l’antena s’introdueixen dos apertures de forma ortogonal, alimentades amb un desfasament de 90º entre elles, s’aconsegueix polarització circular. L’opció de separar les apertures redueix la transferència de potència entre elles, i disminueix el guany de polarització creuada. La xarxa d’alimentació dissenyada és un divisor de Wilkinson amb una línia de λ/4 a la freqüència central, encara que el desfasament als extrems de la banda no sigui de 90º. Com a xarxa d’alimentació es va provar un hibrid de 90º, però l’elevat valor del paràmetre S21 de l’antena impossibilita l’adaptació a l’entrada del hibrid.
Resumo:
A simplc formulation Io compute thc envelope correlation of anantenna divemiry system is dcrired. 11 is shown how to compute theenvelope correlation hom the S-parameter descnplian of the antennasystem. This approach has the advantage that i t does not require thecomputation nor the measurement of the radiation panem of theantenna system. It also offers the advantage of providing a clcaunderstanding ofthe effects ofmutual coupling and input match on thediversity performance of the antcnnii system.
Resumo:
Advancements in power electronic semiconductor switching devices have lead to significantly faster switching times. In motor and generator applications, the fast switching times of pulse width modulated (PWM) inverters lead to overvoltages caused by voltage reflections with shorter and shorter cables. These excessive overvoltages may lead to a failure of the electrical machine in a matter of months. In this thesis, the causes behind the overvoltage phenomenon as well as its different mitigation techniques are studied. The most suitable techniques for mitigating the overvoltage phenomenon in wind power generator applications are chosen based on both simulations and actual measurements performed on a prototype. An RC filter at the terminals of the electrical machine and an inverter output filter designed to reduce the rise and fall times of voltage pulses are presented as a solution to the overvoltage problem. The performance and losses of both filter types are analysed.
Resumo:
With the recent progress and rapid increase in mobile terminals, the design of antennas for small mobile terminals is acquiring great importance. In view of this situation, several design concepts are already been addressed by the scientists and engineers. Compactness and efficiency are the major criteria for mobile terminal antennas. The challenging task of the microwave scientists and engineers is to device compact printed radiating systems having broadband behavior, together with good efficiency. Printed antenna technology has received popularity among antenna scientists after the introduction of microstrip antenna in 1970s. The successors in this kind such as printed monopoles and planar inverted F are also equally important. Scientists and Engineers are trying to explore this technology as a viable coast effective solution for forthcoming microwave revolution. The transmission line perspectives of antennas are very interesting. The concept behind any electromagnetic radiator is simple. Any electromagnetic system with a discontinuity is radiating electromagnetic energy. The size, shape and the orientation of the discontinuities controls the radiation characteristics of the system such as radiation pattern, gain, polarization etc. It can be either resonant or non resonant structure. Microstrip antennas are suitable for wireless applications due to their low cost, high gain and ease of fabrication. But the major disadvantage of micro strip antennas is their inherent narrow bandwidth. A lot of techniques are introduced by the researchers all over the world to enhance the bandwidth of micro strip patch antennas. The thesis addresses an attempt to enhance the bandwidth of micro strip patch antennas by incorporating impedance matching strip as a part of the micro strip patch antenna. The first part of the thesis deals with the broadband operation of the tilted square slot and polygonal slot loaded square micro strip patch antennas. The resonant mechanisms are clearly mentioned using the simulation and experimental studies. The bandwidth of the polygonal slotted broadband patch antenna is again enhanced by implementing an Lstrip feed mechanism. In the second major part of the thesis, a novel gain enhancement technique for single band and broadband square micro strip patch antennas is achieved by implementing offset stacked configurations.
Resumo:
A compact Co-Planar Waveguide (CPW) fed antenna operating at 2.4GHz with 300MHz 2:1 VSWR bandwidth is presented. Compared to a conventional quarter wavelength CPW fed monopole antenna, the aperture area reduction of the present antenna is 85%. The prototype antenna fabricated on a substrate of εr = 4.4 and thickness 1.6mm is only 22x10x1.6mm3. This much size reduction and impedance matching is achieved by adjusting the signal to ground plane separation and meandering the ground plane of a 50Ω CPW transmission line
Resumo:
A dual band RFID applications in 800 900 MHz and 2400 MHz band is presented. The Asymmetric Coplanar Strip (ACS) fed antenna consists of inverted L shaped monopole with a capacitive loading to provide necessary impedance matching and current distribution. The antenna has wide bandwidth from 790 MHz tol050 MHz and from 2350 MHz to 2640 MHz coving the RFID UHF and Microwave frequencies. The uniplanar antenna having overall dimensions of 48 mm x 14 mm is printed on one side of a substrate of dielectric constant 4.4 and height 1.6 mm.
Resumo:
An electrically small, broadband-modified, truncated ground metamaterial EZ antenna is presented. This, a modified EZ antenna system, achieves a larger bandwidth of the order of 650 MHz by adjusting the metamaterial-inspired meandered ground element fed by a top loaded monopole. The design is devoid of the large ground planes and the external parasitic elements used in conventional designs for achieving proper impedance matching characteristics. The antenna requires a small foot print of kg/5 3 kg/10, where kg is the guided wavelength corresponding to the lowest frequency of operation, when printed on a substrate of dielectric constant 4.4 and thickness 1.6 mm. The antenna offers a 2:1 VSWR bandwidth from 750 MHz to 1.4 GHz, which covers CDMA, GSM, and ISM bands
Resumo:
In magnetic resonance imaging (MRI), either on human or animal studies, the main requirements for radiofrequency (RF) coils are to produce a homogeneous RF field while used as a transmitter coil and to have the best signal-to-noise ratio (SNR) while used as a receiver. Besides, they need to be easily frequency adjustable and have input impedance matching 50 Omega to several different load conditions. New theoretical and practical concepts are presented here for considerable enhancing of RF coil homogeneity for MRI experiments on small animals. To optimize field homogeneity, we have performed simulations using Blot and Savart law varying the coil`s window angle, achieving the optimum one. However, when the coil`s dimensions are the same order of the wave length and according to transmission line theory, differences in electrical length and effects of mutual inductances between adjacent strip conductors decrease both field homogeneity and SNR. The problematic interactions between strip conductors by means of mutual inductance were eliminated by inserting crossings at half electrical length, avoiding distortion on current density, thus eliminating sources of field inhomogeneity. Experimental results show that measured field maps and simulations are in good agreement. The new coil design, dubbed double-crossed saddle described here have field homogeneity and SNR superior than the linearly driven 8-rung birdcage coil. One of our major findings was that the effects of mutual inductance are more significant than differences in electrical length for this frequency and coil dimensions. In vitro images of a primate Cebus paela brain were acquired, confirming double-crossed saddle superiority. (C) 2010 Wiley Periodicals, Inc. Concepts Magn Reson Part B (Magn Reson Engineering) 37B: 193-201, 2010
Resumo:
This work describes the study, the analysis, the project methodology and the constructive details of a high frequency DC/AC resonant series converter using sequential commutation techniques for the excitation of an inductive coupled thermal plasma torch. The aim of this thesis is to show the new modulation technique potentialities and to present a technological option for the high-frequency electronic power converters development. The resonant converter operates at 50 kW output power under a 400 kHz frequency and it is constituted by inverter cells using ultra-fast IGBT devices. In order to minimize the turn-off losses, the inverter cells operates in a ZVS mode referred by a modified PLL loop that maintains this condition stable, despite the load variations. The sequential pulse gating command strategy used it allows to operate the IGBT devices on its maximum power limits using the derating and destressing current scheme, as well as it propitiates a frequency multiplication of the inverters set. The output converter is connected to a series resonant circuit constituted by the applicator ICTP torch, a compensation capacitor and an impedance matching RF transformer. At the final, are presented the experimental results and the many tests achieved in laboratory as form to validate the proposed new technique
Resumo:
The microstrip antennas are in constant evidence in current researches due to several advantages that it presents. Fractal geometry coupled with good performance and convenience of the planar structures are an excellent combination for design and analysis of structures with ever smaller features and multi-resonant and broadband. This geometry has been applied in such patch microstrip antennas to reduce its size and highlight its multi-band behavior. Compared with the conventional microstrip antennas, the quasifractal patch antennas have lower frequencies of resonance, enabling the manufacture of more compact antennas. The aim of this work is the design of quasi-fractal patch antennas through the use of Koch and Minkowski fractal curves applied to radiating and nonradiating antenna s edges of conventional rectangular patch fed by microstrip inset-fed line, initially designed for the frequency of 2.45 GHz. The inset-fed technique is investigated for the impedance matching of fractal antennas, which are fed through lines of microstrip. The efficiency of this technique is investigated experimentally and compared with simulations carried out by commercial software Ansoft Designer used for precise analysis of the electromagnetic behavior of antennas by the method of moments and the neural model proposed. In this dissertation a study of literature on theory of microstrip antennas is done, the same study is performed on the fractal geometry, giving more emphasis to its various forms, techniques for generation of fractals and its applicability. This work also presents a study on artificial neural networks, showing the types/architecture of networks used and their characteristics as well as the training algorithms that were used for their implementation. The equations of settings of the parameters for networks used in this study were derived from the gradient method. It will also be carried out research with emphasis on miniaturization of the proposed new structures, showing how an antenna designed with contours fractals is capable of a miniaturized antenna conventional rectangular patch. The study also consists of a modeling through artificial neural networks of the various parameters of the electromagnetic near-fractal antennas. The presented results demonstrate the excellent capacity of modeling techniques for neural microstrip antennas and all algorithms used in this work in achieving the proposed models were implemented in commercial software simulation of Matlab 7. In order to validate the results, several prototypes of antennas were built, measured on a vector network analyzer and simulated in software for comparison