930 resultados para immunohistochemical localization
Resumo:
The metallothionein-2 (MT-2) gene was isolated from the mandarin fish, one of the most important industrial aquatic animals in China, by using rapid amplification of cDNA ends (RACE). The deduced amino acid sequence of MT-2 comprised 60 amino acids and showed approximately 62.3% identity to human metallothionein. Its promoter region was amplified by thermal asymmetric interlaced polymerase chain reaction (TAIL-PCR). The MT-2 gene consists of 3 exons and 2 introns, extending approximately 900 bp of genomic sequence. Phylogenetic analysis clearly demonstrated that MT-2 formed a clade with fish metallothionein. The promoter region contained 5 putative metal-regulatory elements (MREs) and 1 TATA box. Real-time quantitative RT-PCR analysis revealed that MT-2 transcripts were significantly increased in the brain and gills and were stable in the muscles, liver, and trunk kidney in Cd2+-stimulated fish. Western blotting analysis demonstrated that the protein of the MT-2 gene was expressed mainly in the gills, liver, heart, trunk kidney, muscle, and intestine; it was weakly detected in the brain and head kidney. Moreover, the MT-2 protein was immunohistochemically detected in the cytoplasm in the liver and trunk kidney. All the above results revealed that the mandarin fish MT-2 would be a useful biomarker for metal pollution. (C) 2008 Published by Elsevier Inc.
Resumo:
The cDNA encoding grass carp intelectin was isolated from a head kidney cDNA library, and termed gcIntL. The deduced amino acid sequence of gcIntL consists of 318 amino acids, and about 55% identical and 74% similar to human intelectin, which is a new type of lectin recognizing galactofuranose, and plays a role in the recognition of bacteria-specific components in animal hosts. The gcIntL gene consists of seven exons and six introns, spacing over approximately 3 kb of genomic sequence. Phylogenetic analysis clearly demonstrated that the gcIntL formed a clade with Danio rerio intelectin and 35 kDa serum lectin. By real-time quantitative RT-PCR analysis, gcIntL transcripts were significantly induced in head kidney, trunk kidney, spleen, and intestine from LPS-stimulated fish. RT-PCR and Western blotting analysis demonstrated that the mRNA and protein of gcIntL gene have the same expression pattern, and both were detected in brain, gill, intestine, head kidney, trunk kidney, spleen, and heart. Furthermore, gcIntL protein could be detected in gill, intestine, trunk kidney, head kidney, spleen, heart, and brain including medulla oblongata and optic lobe, as determined by immunohistochemistry. This is the first report of intelectin expression pattern in fish, and of recombinant gcIntL and polyclonal antibody against gcIntL. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
We have recently isolated a cDNA (SKV1.1) encoding a Shakei-related K+ channel from the human parasitic trematode Schistosoma mansoni. In order to better understand the functions of SKv1.1 protein, the distribution of SKv1.1 protein in adult S. mansoni was analyzed by immunohistochemistry using a region-specific antibody. SKV1.1 proteins were widely expressed in the nervous and muscular systems. The strongest immunoreactivity (IR) was observed in the nervous system of both male and female. In the nervous system, IR for SKv1.1 proteins was localized in cell bodies and nerve fibers of the anterior ganglia, the central commissure, and the main nerve cords. IR was also observed in the dorsal and the ventral peripheral nerve nets, fine nerve fibers entering into a variety of structures such as the dorsal tubercles, longitudinal and ventral muscle fibers, and oral and ventral suckers. In the muscular system, SKv1.1 proteins were localized to the longitudinal, circular, and ventral muscle fibers of male as well as in isolated muscle fibers where native A-type K+ currents were measured. Moderate IR was also seen in a large number of cell bodies in the parenchyma. These results indicate that SKv1.1 protein may play an important role in the regulation of the excitability of neurons and muscle cells of S. mansoni. (C) 1995 Academic Press, Inc.
Resumo:
Urotensin II (UII) is traditionally regarded as a product of the neurosecretory cells in the caudal portion of the spinal cord of jawed fishes. A peptide related to UII has been recently isolated from the frog brain, thereby providing the first evidence that UII is also present in the central nervous system of a tetrapod. In the present study, we have investigated the distribution of UII-immunoreactive elements in the brain and spinal cord of the frog Rana ridibunda by immunofluorescence using an antiserum directed against the conserved cyclic region of the peptide. Two distinct populations of UII-immunoreactive perikarya were visualized. The first group of positive neurons was found in the nucleus hypoglossus of the medulla oblongata, which controls two striated muscles of the tongue. The second population of immunoreactive cell bodies was represented by a subset of motoneurons that were particularly abundant in the caudal region of the cord (34% of the motoneuron population). The telencephalon, diencephalon, mesencephalon, and metencephalon were totally devoid of UII-containing cell bodies but displayed dense networks of UII-immunoreactive fibers, notably in the thalamus, the tectum, the tegmentum, and the granular layer of the cerebellum. In addition, a dense bundle of long varicose processes projecting rostrocaudally was observed coursing along the ventral surface of the brain from the midtelencephalon to the medulla oblongata. Reversed-phase high-performance liquid chromatography analysis of frog brain, medulla oblongata, and spinal cord extracts revealed that, in all three regions, UII-immunoreactive material eluted as a single peak which exhibited the same retention time as synthetic frog UII. Taken together, these data indicate that UII, in addition to its neuroendocrine functions in fish, is a potential regulatory peptide in the central nervous system of amphibians. (C) 1996 Wiley-Liss, Inc.
Resumo:
The aim of this study was to evaluate the distribution of inhibin/activin alpha, beta(A) and beta(B) subunits and follistatin in immature oocytes and in matured oocytes before and after IVF. Denuded oocytes were submitted to a whole-mount immunofluorescence procedure. Specimens were imaged and fluorescent intensities quantified by scanning laser confocal microscopy. Immunoreactivity for inhibin alpha subunit (both alpha(C) and pro-alpha. regions), abundant in the ooplasm of immature oocytes, decreased after maturation (a 68% and 88% decrease, respectively; P < 0.001), but increased after IVF by 2- and 5.7-fold, respectively (P < 0.01). Intense staining for PA was detected in immature oocytes (predominantly in the outer ooplasm and zona pellucida) but after maturation and fertilization it was localized mainly in the zona pellucida, perivitelline space and oolemma. Immunoreactivity for RA in the ooplasm decreased by 58% after maturation (P < 0.001) but increased again by 75% after fertilization (P < 0.01). Immunoreactivity for beta(B) was localized mainly in the zona pellucida and did not change after maturation. However, immurloreactivity for beta(B) was not detected in the zona pellucida after fertilization, but remained unchanged in unfertilized oocytes. Immunoreactivity for follistatin was detected in the ooplasm and zona pellucida of immature oocytes but decreased progressively in the ooplasm after maturation (a 63% decrease; P < 0.001) and did not change after IVF. Examination of partially denuded cumulus-oocyte complexes confirmed abundant expression of alpha(C), pro-alpha, beta(A) and follistatin immunoreactivity in cumulus cells, whereas beta(B) subunit staining was weak or absent in cumulus cells, but intense in the zona pellucida. In conclusion, the present study shows that qualitative and quantitative changes in the distribution of inhibin/activin subunits and follistatin accompany oocyte maturation and fertilization. The possibility, indicated by these observations, that activin A and activin B may play distinct roles in bovine oocyte maturation and fertilization warrants further study.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Monoclonal antibodies against two alpha-bungarotoxin-binding subunits (alpha-7 and alpha-8) of the nicotinic acetylcholine receptors (nAChRs) were used as immunohistochemical probes to map their distribution in the chick diencephalon and mesencephalon. The distribution of the alpha-7 and alpha-8 nAChR subunits was compared to the distribution of immunoreactivity produced by a monoclonal antibody against the beta-2 structural subunit of the nAChRs.Structures that contained high numbers of alpha-7-like immunoreactive (LI) somata included the intergeniculate leaflet, nucleus intercalatus thalami, nucleus ovoidalis, organum paraventricularis, nucleus rotundus, isthmic nuclei, nucleus trochlearis, oculomotor complex, nucleus interstitio-pretecto-subpretectalis, stratum griseum centrale of the optic tectum, and nucleus semilunaris. Neuropil staining for alpha-7-LI was intense in the nucleus dorsomedialis hypothalami, nucleus geniculatus lateralis ventralis, griseum tecti, isthmic nuclei, nucleus lentiformis mesencephali, nucleus of the basal optic root, and stratum griseum et fibrosum superficiale of the tectum. High numbers of alpha-8-LI somata were found in the stratum griseum et fibrosum superficiale of the tectum and the nucleus interstitio-pretecto-subpretectalis, and intense neuropil staining for alpha-8-LI was found in the dorsal thalamus, nucleus geniculatus lateralis ventralis, lateral hypothalamus, griseum tecti, nucleus lentiformis mesencephali, nucleus interpeduncularis, and stratum griseum et fibrosum superficiale of the tectum. High numbers of beta-2-LI somata were found only in the nucleus spiriformis lateralis, whereas neuropil staining for beta-2-LI was intense in the nucleus geniculatus lateralis ventralis, nucleus suprachiasmaticus, nucleus lateralis anterior, nucleus habenularis lateralis, area pretectalis, griseum tecti, nucleus lentiformis mesencephali, nucleus externus, and nucleus interpeduncularis, and in the stratum griseum centrale, stratum griseum et fibrosum superficiale, and stratum opticum of the tectum.These results indicate that there are major disparities in the localization of the alpha-bungarotoxin-binding alpha-7 and alpha-8 nAChR subunits and the beta-2 structural nAChR subunit in the chick diencephalon and mesencephalon. These nAChR subunits appear, however, to coexist in several regions of the chick brain.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Tooth resorption is among the most common and most challenging problems in feline dentistry It is a progressive disease eventually leading to tooth loss and often root replacement. The etiology of moth resorption remains obscure and to date no effective therapeutic approach is known. The present study is aimed at assessing the reliability of radiographic imaging and addressing the possible involvement of receptor activator of NF kappa B (RANK), its ligand (RANKL), and osteoprotegerin (OPG) in the process of tooth resorption. Teeth from 8 cats were investigated by means of radiographs and paraffin sections followed by immunolabeling. Six cats were diagnosed with tooth resorption based on histopathologic and radiographic findings. Samples were classified according to a four-stage diagnostic system. Radiologic assessment of tooth resorption correlated very strongly with histopathologic findings. Tooth resorption was accompanied by a strong staining with all three antibodies used, especially with anti-RANK and anti-RANKL antibodies. The presence of OPG and RANKL at the resorption site is indicative of repair attempts by fibroblasts and stromal cells. These findings should be extended by further investigations in order to elucidate the pathophysiologic processes underlying tooth resorption that might lead to prophylactic and/or therapeutic measures. J Vet Dent 27(2); 75 - 83, 2010
Resumo:
It has been proposed that gonadotropins and/or gonadotropin releasing hormone (GnRH) could be involved in the pathophysiology of the side effects after spaying in bitches, such as urinary incontinence and an increased production of a woolly undercoat. In order to provide tools to investigate the role of these hormones in dogs we developed immunohistochemical techniques and real-time RT-PCR to study whether GnRH-, LH-, and FSH-receptors exist in canine skin and urinary bladder. Tissue samples from the skin of the flank region and the ventral midline of the urinary bladder from euthanised dogs were examined. We were able to quantify mRNA expression of GnRH-, FSH-, and LH-receptors in canine skin and bladder biopsies with a high primer efficacy. Immunohistochemical studies showed that GnRH-, FSH-, and LH-receptors are expressed in vessel walls, the epidermis, the hair follicle and in sebaceous and sweat glands in canine skin and in transitional epithelium, and smooth muscle tissue in the urinary bladder. Our data provide the fundamentals to examine the distribution of FSH-, LH-, and GnRH-receptors in canine skin and urinary bladder and to assess gene activity at the transcriptional level by real-time RT-PCR.
Immunohistochemical localization of RANK, RANKL and OPG in healthy and arthritic canine elbow joints
Resumo:
OBJECTIVE: To determine if the receptor activator of nuclear factor-kappaB-receptor activator of nuclear factor-kappaB ligand-osteoprotegerin (RANK-RANKL-OPG) system is active in bone remodeling in dogs and, if so, whether differences in expression of these mediators occur in healthy and arthritic joints. STUDY DESIGN: Experimental study. SAMPLE POPULATION: Fragmented processus coronoidei (n=20) were surgically removed from dogs with elbow arthritis and 5 corresponding healthy samples from dogs euthanatized for reasons other than elbow joint disease. METHODS: Bright-field immunohistochemistry and high-resolution fluorescence microscopy were used to investigate the distribution of RANK, RANKL, and OPG in healthy and arthritic joints. RESULTS: All 3 molecules were identified by immunostaining of canine bone tissue. In elbow dysplasia, the number of RANK-positive osteoclasts was increased. In their vicinity, cells expressing RANKL, a mediator of osteoclast activation, were abundant whereas the number of osteoblasts having the potential to limit osteoclastogenesis and bone resorption via OPG was few. CONCLUSIONS: The RANK-RANKL-OPG system is active in bone remodeling in dogs. In elbow dysplasia, a surplus of molecules promoting osteoclastogenesis was evident and is indicative of an imbalance between the mediators regulating bone resorption and bone formation. Both OPG and neutralizing antibodies against RANKL have the potential to counterbalance bone resorption. CLINICAL RELEVANCE: Therapeutic use of neutralizing antibodies against RANKL to inhibit osteoclast activation warrants further investigation.