992 resultados para ignition


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes the procedures of the analysis Of Pollutant gases, as volatile organic compounds (benzene, toluene, ethylbenzene, o-xylene, m-xylene and p-xylene) emitted by engines, using high-resolution gas chromatography (HRGC). In a broad sense, CI engine burning diesel was compared with B10 and a drastic reduction was observed in the emissions of the aromatic compounds by using B10. Especially for benzene, the reduction of concentrations occurs on the level of about 19.5%. Although a concentration value below 1 mu g ml(-1) has been obtained, this reduction is extremely significant since benzene is a carcinogenic compound. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The blending of coals has become popular to improve the performance of coals, to meet specifications of power plants and, to reduce the cost of coals, This article reviews the results and provides new information on ignition, flame stability, and carbon burnout studies of blended coals. The reviewed studies were conducted in laboratory-, pilot-, and full-scale facilities. The new information was taken in pilot-scale studies. The results generally show that blending a high-volatile coal with a low-volatile coal or anthracite can improve the ignition, flame stability and burnout of the blends. This paper discusses two general methods to predict the performance of blended coals: (1) experiment; and (2) indices. Laboratory- and pilot-scale tests, at least, provide a relative ranking of the combustion performance of coal/blends in power station boilers. Several indices, volatile matter content, heating value and a maceral index, can be used to predict the relative ranking of ignitability and flame stability of coals and blends. The maceral index, fuel ratio, and vitrinite reflectance can also be used to predict the absolute carbon burnout of coal and blends within limits. (C) 2000 Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Abstract

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A case of sustained combustion of a human body that occurred in 2006 in Geneva, Switzerland, is presented. The body of a man was discovered at home and found to have been almost completely incinerated between the knees and the mid-chest, with less damage to the head, arms, lower legs and feet. His dog was also found dead just behind the house door. The external source of ignition was most likely a cigarette or a cigar. The chair in which the man had been sitting was largely consumed while other objects in the room exhibited only a brown oily or greasy coating and were virtually undamaged. Toxicological analyses carried out on the blood from the lower legs showed low levels of desalkylflurazepam. Alcohol concentration was 1.10 per thousand, carboxyhaemoglobin levels were 12% and cyanide concentration was 0.05 mg/L. Toxicological analyses carried out on the dog's blood showed carboxyhaemoglobin levels at 65%.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Combustion of wood is increasing because of the needs of decreasing the emissions of carbon dioxide and the amount of waste going to landfills. Wood based fuels are often scattered on a large area. The transport distances should be short enough to prevent too high costs, and so the size of heating and power plants using wood fuels is often rather small. Combustion technologies of small-size units have to be developed to reach efficient and environmentally friendly energy production. Furnaces that use different packed bed combustion or gasification techniques areoften most economic in small-scale energy production. Ignition front propagation rate affects the stability, heat release rate and emissions of packed bed combustion. Ignition front propagation against airflow in packed beds of wood fuels has been studied. The research has been carried out mainly experimentally. Theoretical aspects have been considered to draw conclusions about the experimental results. The effects of airflow rate, moisture content of the fuel, size, shape and density of particles, and porosity of the bed on the propagation rate of the ignition front have been studied. The experiments were carried out in a pot furnace. The fuels used in the experiments were mainly real wood fuels that are often burned in the production of energy. The fuel types were thin wood chips, saw dust, shavings, wood chips, and pellets with different sizes. Also a few mixturesof the above were tested. Increase in the moisture content of the fuel decreases the propagation rates of the ignition front and makes the range of possible airflow rates narrower because of the energy needed for the evaporation of water and the dilution of volatile gases due to evaporated steam. Increase in the airflow rate increases the ignition rate until a maximum rate of propagation is reached after which it decreases. The maximum flame propagation rate is not always reached in stoichiometric combustion conditions. Increase in particle size and density transfers the optimum airflow rate towards fuel lean conditions. Mixing of small and large particles is often advantageous, because small particles make itpossible to reach the maximum ignition rate in fuel rich conditions, and large particles widen the range of possible airflow rates. A correlation was found forthe maximum rate of ignition front propagation in different wood fuels. According to the correlation, the maximum ignition mass flux is increased when the sphericity of the particles and the porosity of the bed are increased and the moisture content of the fuel is decreased. Another fit was found between sphericity and porosity. Increase in sphericity decreases the porosity of the bed. The reasons of the observed results are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of the present article is to assess and compare the performance of electricity generation systems integrated with downdraft biomass gasifiers for distributed power generation. A model for estimating the electric power generation of internal combustion engines and gas turbines powered by syngas was developed. First, the model determines the syngas composition and the lower heating value; and second, these data are used to evaluate power generation in Otto, Diesel, and Brayton cycles. Four synthesis gas compositions were tested for gasification with: air; pure oxygen; 60% oxygen with 40% steam; and 60% air with 40% steam. The results show a maximum power ratio of 0.567 kWh/Nm(3) for the gas turbine system, 0.647 kWh/Nm(3) for the compression ignition engine, and 0.775 kWh/Nm(3) for the spark-ignition engine while running on synthesis gas which was produced using pure oxygen as gasification agent. When these three systems run on synthesis gas produced using atmospheric air as gasification agent, the maximum power ratios were 0.274 kWh/Nm(3) for the gas turbine system, 0.302 kWh/Nm(3) for CIE, and 0.282 kWh/Nm(3) for SIE. The relationship between power output and synthesis gas flow variations is presented as is the dependence of efficiency on compression ratios. Since the maximum attainable power ratio of CIE is higher than that of SIE for gasification with air, more research should be performed on utilization of synthesis gas in CIE. (C) 2014 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In Brazil, due to its availability, sugar cane bagasse has a high potential for power generation. The knowledge of ignition behavior, as well as the knowledge of the chemical kinetics, in of fuels combustion process is important features in boilers projects and in the stability of the combustion process control. The aim of this study is to investigate the thermal behavior of sugar cane bagasse, coal and their blends. The methodology proposed by Tognotti et al. (1985) was applied to determine the ignition temperature for all samples. Ignition temperatures were 256oC for neat bagasse and 427oC for neat coal, and 275oC for both blends (50-50% and 25-75%). The ModelFree Kinetics was applied to determine the apparent activation energy (Eα) of the thermal decomposition of sugar cane bagasse. For the two major events of mass loss of bagasse which correspond to the thermal decomposition of organic matter (mainly hemicellulose, cellulose and lignin), average values of Eα were obtained for both combustion and pyrolysis processes. In synthetic air atmosphere, the Eα were 170.8±26.3 kJ⋅mol-1 and 277.8±58.6 kJ⋅mol-1, while in nitrogen atmosphere, the Eα were 185.0 ± 11.4 kJ⋅mol-1 and 82.1±44.4 kJ⋅mol-1. The results obtained can be explained by synergistic effects when both bagasse and coal were blended, changing the fuel reactivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Fra i sistemi di propulsione elettrica per satelliti, il Pulsed Plasma Thruster, PPT, è quello dal design più semplice. È anche il primo sistema di propulsione elettrica utilizzato in un satellite artificiale, ossia ZOND-2 lanciato nel 1964 dall’Unione Sovietica. Tuttavia, dopo circa 50 anni di ricerca, la comprensione teorica e sperimentale di questo dispositivo rimane limitata. Questo elaborato di tesi magistrale indaga sul sottosistema di accensione del PPT, cercando di mettere in luce alcuni aspetti legati al lifetime della spark plug, SP. Tale SP, o candela, è l’attuatore del sottosistema di accensione. Questa produce una scintilla sulla sua superficie, la quale permette la realizzazione della scarica elettrica principale fra i due elettrodi del motore. Questa scarica crea una sottile parete di plasma che, per mezzo della forza elettromagnetica di Lorentz, produce la spinta del PPT. Poiché la SP si trova all’interno del catodo del motore e si affaccia nella camera di scarica, questa soffre di fenomeni di corrosione e di deposizione carbonacea proveniente dal propellente. Questi fenomeni possono limitare notevolmente il lifetime della SP. I parametri connessi alla vita operativa della SP sono numerosi. In questo elaborato si è analizzata la possibilità di utilizzare una elettronica di accensione della candela alternativa alla classica soluzione che utilizza un trasformatore. Il sottosistema di accensione classico e quello nuovo sono stati realizzati e testati, per metterne in luce le differenze ed i possibili vantaggi/svantaggi.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ethanol-gasoline fuel blends are increasingly being used in spark ignition (SI) engines due to continued growth in renewable fuels as part of a growing renewable portfolio standard (RPS). This leads to the need for a simple and accurate ethanol-gasoline blends combustion model that is applicable to one-dimensional engine simulation. A parametric combustion model has been developed, integrated into an engine simulation tool, and validated using SI engine experimental data. The parametric combustion model was built inside a user compound in GT-Power. In this model, selected burn durations were computed using correlations as functions of physically based non-dimensional groups that have been developed using the experimental engine database over a wide range of ethanol-gasoline blends, engine geometries, and operating conditions. A coefficient of variance (COV) of gross indicated mean effective pressure (IMEP) correlation was also added to the parametric combustion model. This correlation enables the cycle combustion variation modeling as a function of engine geometry and operating conditions. The computed burn durations were then used to fit single and double Wiebe functions. The single-Wiebe parametric combustion compound used the least squares method to compute the single-Wiebe parameters, while the double-Wiebe parametric combustion compound used an analytical solution to compute the double-Wiebe parameters. These compounds were then integrated into the engine model in GT-Power through the multi-Wiebe combustion template in which the values of Wiebe parameters (single-Wiebe or double-Wiebe) were sensed via RLT-dependence. The parametric combustion models were validated by overlaying the simulated pressure trace from GT-Power on to experimentally measured pressure traces. A thermodynamic engine model was also developed to study the effect of fuel blends, engine geometries and operating conditions on both the burn durations and COV of gross IMEP simulation results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A fundamental combustion model for spark-ignition engine is studied in this report. The model is implemented in SIMULINK to simulate engine outputs (mass fraction burn and in-cylinder pressure) under various engine operation conditions. The combustion model includes a turbulent propagation and eddy burning processes based on literature [1]. The turbulence propagation and eddy burning processes are simulated by zero-dimensional method and the flame is assumed as sphere. To predict pressure, temperature and other in-cylinder variables, a two-zone thermodynamic model is used. The predicted results of this model match well with the engine test data under various engine speeds, loads, spark ignition timings and air fuel mass ratios. The developed model is used to study cyclic variation and combustion stability at lean (or diluted) combustion conditions. Several variation sources are introduced into the combustion model to simulate engine performance observed in experimental data. The relations between combustion stability and the introduced variation amount are analyzed at various lean combustion levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experimental work and analysis was done to investigate engine startup robustness and emissions of a flex-fuel spark ignition (SI) direct injection (DI) engine. The vaporization and other characteristics of ethanol fuel blends present a challenge at engine startup. Strategies to reduce the enrichment requirements for the first engine startup cycle and emissions for the second and third fired cycle at 25°C ± 1°C engine and intake air temperature were investigated. Research work was conducted on a single cylinder SIDI engine with gasoline and E85 fuels, to study the effect on first fired cycle of engine startup. Piston configurations that included a compression ratio change (11 vs 15.5) and piston geometry change (flattop vs bowl) were tested, along with changes in intake cam timing (95,110,125) and fuel pressure (0.4 MPa vs 3 MPa). The goal was to replicate the engine speed, manifold pressure, fuel pressure and testing temperature from an engine startup trace for investigating the first fired cycle for the engine. Results showed bowl piston was able to enable lower equivalence ratio engine starts with gasoline fuel, while also showing lower IMEP at the same equivalence ratio compared to flat top piston. With E85, bowl piston showed reduced IMEP as compression ratio increased at the same equivalence ratio. A preference for constant intake valve timing across fuels seemed to indicate that flattop piston might be a good flex-fuel piston. Significant improvements were seen with higher CR bowl piston with high fuel pressure starts, but showed no improvement with low fuel pressures. Simulation work was conducted to analyze initial three cycles of engine startup in GT-POWER for the same set of hardware used in the experimentations. A steady state validated model was modified for startup conditions. The results of which allowed an understanding of the relative residual levels and IMEP at the test points in the cam phasing space. This allowed selecting additional test points that enable use of higher residual levels, eliminating those with smaller trapped mass incapable of producing required IMEP for proper engine turnover. The second phase of experimental testing results for 2nd and 3rd startup cycle revealed both E10 and E85 prefer the same SOI of 240°bTDC at second and third startup cycle for the flat top piston and high injection pressures. E85 fuel optimal cam timing for startup showed that it tolerates more residuals compared to E10 fuel. Higher internal residuals drives down the Ø requirement for both fuels up to their combustion stability limit, this is thought to be direct benefit to vaporization due to increased cycle start temperature. Benefits are shown for an advance IMOP and retarded EMOP strategy at engine startup. Overall the amount of residuals preferred by an engine for E10 fuel at startup is thought to be constant across engine speed, thus could enable easier selection of optimized cam positions across the startup speeds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Five test runs were performed to assess possible bias when performing the loss on ignition (LOI) method to estimate organic matter and carbonate content of lake sediments. An accurate and stable weight loss was achieved after 2 h of burning pure CaCO3 at 950 °C, whereas LOI of pure graphite at 530 °C showed a direct relation to sample size and exposure time, with only 40-70% of the possible weight loss reached after 2 h of exposure and smaller samples losing weight faster than larger ones. Experiments with a standardised lake sediment revealed a strong initial weight loss at 550 °C, but samples continued to lose weight at a slow rate at exposure of up to 64 h, which was likely the effect of loss of volatile salts, structural water of clay minerals or metal oxides, or of inorganic carbon after the initial burning of organic matter. A further test-run revealed that at 550 °C samples in the centre of the furnace lost more weight than marginal samples. At 950 °C this pattern was still apparent but the differences became negligible. Again, LOI was dependent on sample size. An analytical LOI quality control experiment including ten different laboratories was carried out using each laboratory's own LOI procedure as well as a standardised LOI procedure to analyse three different sediments. The range of LOI values between laboratories measured at 550 °C was generally larger when each laboratory used its own method than when using the standard method. This was similar for 950 °C, although the range of values tended to be smaller. The within-laboratory range of LOI measurements for a given sediment was generally small. Comparisons of the results of the individual and the standardised method suggest that there is a laboratory-specific pattern in the results, probably due to differences in laboratory equipment and/or handling that could not be eliminated by standardising the LOI procedure. Factors such as sample size, exposure time, position of samples in the furnace and the laboratory measuring affected LOI results, with LOI at 550 °C being more susceptible to these factors than LOI at 950 °C. We, therefore, recommend analysts to be consistent in the LOI method used in relation to the ignition temperatures, exposure times, and the sample size and to include information on these three parameters when referring to the method.