996 resultados para igneous geochemistry
Resumo:
Major element, trace element, and radiogenic isotope compositions of samples collected from Ocean Drilling Program Leg 126 in the Izu-Bonin forearc basin are presented. Lavas from the center of the basin (Site 793) are high-MgO, low-Ti, two-pyroxene basaltic andesites, and represent the products of synrift volcanism in the forearc region. These synrift lavas share many of the geochemical and petrographic characteristics of boninites. In terms of their element abundances, ratios, and isotope systematics they are intermediate between low-Ti arc tholeiites from the active arc and boninites of the outer-arc high. These features suggest a systematic geochemical gradation between volcanics related to trench distance and a variably depleted source. A basement high drilled on the western flank of the basin (Site 792) comprises a series of plagioclase-rich two-pyroxene andesites with calc-alkaline affinities. These lavas are similar to calc-alkaline volcanics from Japan, but have lower contents of Ti, Zr, and low-field-strength elements (LFSE). Lavas from Site 793 show inter-element variations between Zr, Ti, Sr, Ni, and Cr that are consistent with those predicted during crystallization and melting processes. In comparison, concentrations of P, Y, LFSE, and the rare-earth elements (REE) are anomalous. These elements have been redistributed within the lava pile, concentrating particularly in sections of massive and pillowed flows. Relative movement of these two-element groupings can be related to the alteration of interstitial basaltic andesite glass to a clay mineral assemblage by a post-eruptive process. Fluid-rock interaction has produced similar effects in the basement lavas of Site 792. In this sequence, andesites and dacites have undergone a volume change related to silica mobility. As a result of this process, some lithologies have the major element characteristics of basaltic andesite and rhyolite, but can be related to andesitic or dacitic precursors by silica removal or addition.
Resumo:
The igneous geochemistry of lavas and breccias from the basement of Sites 790 and 791, and pumice clasts from the Pliocene-Pleistocene sedimentary section of Sites 788, 790, 791, and 793 were studied. Arc volcanism became silicic about 1.5 m.y. before the inception of rifting in the Sumisu Rift at 2 Ma, but eruption of these silicic magmas reflects changes in stress regime, especially during the last 130,000 yr, rather than crustal anatexis. Arc magmas have had a larger proportion of slab-derived components since the inception of rifting than before, but are otherwise similar. Rift basalts and rhyolites are derived from a different source than are arc andesites to rhyolites. The rift source has less slab-derived material and is an E-MORB-like source, in contrast to an N-MORB-type source overprinted with more slab-derived material beneath the arc. Rift magma types, in the form of rare pumice and lithic clasts, preceded the rift, and the earliest magmas that erupted in the rift already differed from those of the arc. The earliest large rift eruption produced an exotic explosion breccia ("mousse") despite eruption at >1800 mbsl. Although this rock type is attributed primarily to high magmatic water content, the clasts are more MORB-like in trace element and isotopic composition than are modern Mariana Trough basalts. After rifting began, arc volcanism continued to be predominantly silicic, with individual pumice deposits containing clasts that vary in composition by about 5 wt% SiO2, or about as much as in historical eruptions of submarine Izu Arc volcanoes. The overall variations in magma composition with time during the inception of arc rifting are broadly similar in the Sumisu Rift and Lau Basin, though newly tapped OIB-type mantle seems to be present earlier during basin formation in the Sumisu than Lau case.
Resumo:
The Brazilian Granitic Province from southeastern Mato Grosso do Sul and Mato Grosso region, central western Brazil, can be divided into two major groups and/or magmatic events related to the evolution of the Paraguay Fold Belt. The southern portion crops out in Mato Grosso do Sul State and is constituted by the Taboco, Rio Negro, Coxim and Sonora massifs forming NE-SW oriented, elongated small intrusions. The north portion crops out in Mato Grosso State and is constituted by the São Vicente, Araguaiana and Lajinha batholiths. Lithogeochemical aspects of the northern granites point to Type-I granites ranging from K calc-alkaline to high-K, peraluminous to metaluminous in composition, generated in an environment of continental collision and/or post- collision decompression. The southern granites are Type-I, from K calc-alkaline to high-K, peraluminous to subordinate metalummous, in a syn-collision continental arc environment with the exception of some pre-collisional facies from the Rio Negro Massif. The southern granites have less SiO 2 and K 2O, and are less differentiated and evolved than granites from the northern region. The four southern granites can be grouped into two subordinate sets with the degree of differentiation increasing from South (Taboco and Rio Negro) to North (Coxim and Sonora). The granitic rocks are characterized by a magmatism generated by melting of material from the lower crust which suggests that in this province the formation from non-cogenetic magmas with diversified compositions and distinct degrees of fractioning reaching more steady consolidated environments at the end of the collisional event in the southeastern Amazonian Craton.
Resumo:
The Neoproterozoic granitogenesis related to the Central Mantiqueira Province comprise the calc alkaline to alkaline granitoid complexes of Sorocaba, San Francisco, São Roque, Ibiúna and Piedade. These complexes occur in a ruptil tectonic to tardi (Sn+3) event. The emplacement of the different facies in transtractives structures of the pull-apart type are characterized in the area by the main transcurrent shear zones of Taxaquara-Pirapora, Itu-Jundiuvira, Moreiras, Cangüera and Caucáia of ENE-WSW general direction. The massifs present complex internal architecture characterized by intrusions in restrict initial phase of intermediate equigranular nature. Also present a main phase of porfiroid monzo and sienogranite that fragments the previous phase, followed by lateral accretion of equi to inequigranular material, and in some cases by the accretion of late phases of circular bodies of porfiroid rapakivi granites, and a late to final phase of aplitic to pegmatitic composition. This magmatism grew with the intrusions of successive magmatic pulses, partially controlled by many reactivations of the shear zones. The REE also suggest that the magmatic phases are similar, synchronous and repetitive in four of the complexes in both domains, present in the São Francisco Complex. The crystallization starts from accretion processes, but compositionally quite different from the others. The variation in compositions and ages (TDM) for these granites reflect the derivation from different sources developed under different magmatic conditions, followed by processes of contamination that frequently occur in the crust.
Resumo:
A set of 12 samples of acid rock types Palmas (ATP) and Chapecó (ATC) was used to determine the chemical composition of plagioclase and pyroxene by electron microprobe, with the purpose to get information about the pressure and temperature of crystallization of these rocks. The results show that the pyroxene of ATP rocks (3,2 ± 1,2 kbar, max = 5,1 kbar and 1028 ± 38°C) were formed under pressure conditions higher than those ATC (1,8 ± 0,9 kbar, max = 3,4 kbar and 995 ± 26oC). However, the pressures obtained from plagioclase showed higher pressures for ATC (3.2 ± 1 kbar, max = 6,4 kbar and 1033 ± 12°C) than ATP (1,9 ± 1 kbar, max = 4,8 kbar and 1043 ± 5°C), suggesting that the crystallization of rocktype ATP began with the formation of pyroxene and plagioclase almost simultaneously at a depth of around 17 km while the ATC, began with the crystallization of plagioclase at a depth of about 21 km (assuming a gradient of 3,3 kbar/km). The geothermometry of plagioclase allow us to calculate the concentration of water from about 1 ± 0,3% H2O for both acid rock types. Additional calculations allow us to get the depth of water exsolution of magmatic liquid at 30m below the surface. Although the data are still preliminary and insufficient to model the extrusion of these rocks, they point out to an effusion mechanism of a partially fluidized magma by volatile, which would spread to large areas with small friction with the surface that would increased with the increase of viscosity caused by the loss of volatile and decreasing of temperature, developing coherent structures as lava flows.
Resumo:
There has been little research on geochemistry and isotopic compositions in tholeiites of the Northern region from the Paraná Continental Flood Basalts (PCFB), one of the largest continental provinces of the world. In order to examine the mantle sources involved in the high-Ti (Pitanga and Paranapanema) basalt genesis, we studied Sr, Nd, and Pb isotopic systematics, and major, minor and incompatible trace element abundances. The REE patterns of the investigated samples (Pitanga and Paranapanema magma type) are similar (parallel to) to those of Island Arc Basalts' REE patterns. The high-Ti basalts investigated in this study have initial (133Ma) 87Sr/86Sr ratios of 0.70538-0.70642, 143Nd/144Nd of 0.51233-0.51218, 206Pb/204Pb of 17.74-18.25, 207Pb/204Pb of 15.51-15.57, and 208Pb/204Pb of 38.18-38.45. These isotopic compositions do not display any correlation with Nb/Th, Nb/La or P2O5/K2O ratios, which also reflect that these rocks were not significantly affected by low-pressure crustal contamination. The incompatible trace element ratios and Sr-Nd-Pb isotopic compositions of the PCFB tholeiites are different to those found in Tristan da Cunha ocean island rocks, showing that this plume did not play a substantial role in the PCFB genesis. This interpretation is corroborated by previously published osmium isotopic data (initial γOs values range from+1.0 to+2.0 for high-Ti basalts), which also preclude basalt generation by melting of ancient subcontinental lithospheric mantle. The geochemical composition of the northern PCFB may be explained through the involvement of fluids and/or small volume melts related to metasomatic processes. In this context, we propose that the source of these magmas is a mixture of sublithospheric peridotite veined and/or interlayered with mafic components (e.g., pyroxenites or eclogites). The sublithospheric mantle (dominating the osmium isotopic compositions) was very probably enriched by fluids and/or magmas related to the Neoproterozoic subduction processes. This sublithospheric mantle region may have been frozen and coupled to the base of the Parana basin lithospheric plate above which the Paleozoic subsidence and subsequent Early Cretaceous magmatism occurred. © 2013 Elsevier Ltd.
Resumo:
Subduction zone magmatism is an important and extensively studied topic in igneous geochemistry. Recent studies focus on from where arc magmas are generated, how subduction components (fluids or melts) are fluxed into the source of the magmas, and whether or how the subduction components affect partial melting processes beneath volcanic arcs at convergent boundaries. ^ At 39.5°S in the Central Southern Volcanic Zone of the Andes, Volcano Villarrica is surrounded by a suite of Small Eruptive Centers (SEC). The SECs are located mostly to the east and northeast of the stratovolcano and aligned along the Liquine-Ofqui Fault Zone, the major fracture system in this area. Former studies observed the geochemical patterns of the SECs differ distinctively from those of V. Villarrica and suggested there may be a relationship between the compositions of the volcanic units and their edifice sizes. This work is a comprehensive geochemical study on the SECs near V. Villarrica, using a variety of geochemical tracers and tools including major, trace and REE elements, Li-Be-B elements, Sr-Nd-Pb isotopes and short-lived isotopes such as U-series and 10Be. In this work, systematic differences between the elemental and isotopic compositions of the SECs and those of V. Villarrica are revealed and more importantly, modeled in terms of magmatic processes occurring at continental arc margins. Detailed modeling calculations in this work reconstruct chemical compositions of the primary magmas, source compositions, compositions and percentages of different subduction endmembers mixed into the source, degrees of partial melting and different time scales of the SECs and V. Villarrica, respectively. Geochemical characteristics and possible origins of the two special SECs—andesitic Llizan, with crustal signatures, and Rucapillan, to the northwest toward the trench, are also discussed in this work. ^
Resumo:
A morphologically complex igneous basement was penetrated at Leg 125 Site 786 beneath approximately 100 m of Eocene-Pleistocene sediments at 31°52.45 'N, 141°13.59'E in a 3082-m water depth. The site is located on the forearc basement high (FBH) of the Izu-Bonin (Ogasawara) Arc. In the broadest terms, the sequence in Hole 786B consists of a basal sheeted dike complex, heavily mineralized in places, with overlying pillow lavas giving way to a complex and repeated sequence of interlayered volcanic breccias and lava flows with some thin sedimentary intervals. The sequence has been further cut by dikes or sills, particularly of high-Ca and intermediate-Ca boninite, and is locally strongly sheared by faulting. The whole basement has been covered with middle Eocene-early Pleistocene sediments. A monomict breccia forms the shallowest portion of Hole 786B and a polymict breccia having Mn-oxide-rich clast coatings and matrix forms the deepest part of Hole 786A (-100-160 mbsf). The basement is tectonized in some places, and a mineralized stockwork is present in the deepest part of Hole 786B. A wide variety of rock types form this basement, ranging from mafic to silicic in character and including high-, intermediate-, and low-Ca boninites, intermediate- and low-Ca bronzite andesites, andesite, dacite, and rhyolite groups. Intragroup and intergroup relationships are complicated in detail, and several different upper mantle source(s) probably were involved. A significant role for orthopyroxene-clinopyroxene-plagioclase fractionation is indicated in the mafic-intermediate groups, and the most probable complementary cumulates should be noritic gabbros. Many overall similarities but some subtle differences are noted between the igneous basement at Site 786 and the subaerial outcrops of the FBH to the south in the type boninite locality of Chichijima. Both suites were derived by hydrous melting of a relatively shallow, refractory (harzburgitic) upper mantle source. These Bonin forearc basement rocks are similar in many respects to those of Eocene-Oligocene age now forming the forearc of the Marianas at Leg 60 Site 458 and on Guam. In sharp distinction, the geochemistry of the Eocene-Pleistocene ash sequences overlying the Bonin FBH must have been derived from a very different upper mantle source, implying considerable across-strike differences in sub-arc mantle composition.