948 resultados para idrodinamica, fluidi, Navier-Stokes, Kelvin, Jeans
Resumo:
Questo elaborato presenta i principali contenuti della fluidodinamica. Data la vastità dell'argomento, verranno mostrati i tratti essenziali, senza addentrarsi nei dettagli. Il capitolo iniziale introduce il concetto di fluido e i principali metodi di studio. Segue il corpo centrale dell'elaborato, in cui vengono presentate le equazioni fondamentali della dinamica dei fluidi. Successivamente due brevi capitoli si concentrano su una particolare forma dell'equazione del moto e sul tema della vorticità. L'ultimo capitolo tratta brevemente del collasso gravitazionale, una fra le innumerevoli applicazioni della teoria dei fluidi al campo dell'astrofisica. Vettori e tensori verranno rappresentati in coordinate cartesiane e, dove necessario, saranno richiamate in nota le identità utilizzate nei calcoli.
Resumo:
The issue of intermittency in numerical solutions of the 3D Navier-Stokes equations on a periodic box 0, L](3) is addressed through four sets of numerical simulations that calculate a new set of variables defined by D-m(t) = (pi(-1)(0) Omega(m))(alpha m) for 1 <= m <= infinity where alpha(m) = 2m/(4m - 3) and Omega(m)(t)](2m) = L-3 integral(v) vertical bar omega vertical bar(2m) dV with pi(0) = vL(-2). All four simulations unexpectedly show that the D-m are ordered for m = 1,..., 9 such that Dm+1 < D-m. Moreover, the D-m squeeze together such that Dm+1/D-m NE arrow 1 as m increases. The values of D-1 lie far above the values of the rest of the D-m, giving rise to a suggestion that a depletion of nonlinearity is occurring which could be the cause of Navier-Stokes regularity. The first simulation is of very anisotropic decaying turbulence; the second and third are of decaying isotropic turbulence from random initial conditions and forced isotropic turbulence at fixed Grashof number respectively; the fourth is of very-high-Reynolds-number forced, stationary, isotropic turbulence at up to resolutions of 4096(3).
Resumo:
The periodic 3D Navier-Stokes equations are analyzed in terms of dimensionless, scaled, L-2m-norms of vorticity D-m (1 <= m <= infinity). The first in this hierarchy, D-1, is the global enstrophy. Three regimes naturally occur in the D-1-D-m plane. Solutions in the first regime, which lie between two concave curves, are shown to be regular, owing to strong nonlinear depletion. Moreover, numerical experiments have suggested, so far, that all dynamics lie in this heavily depleted regime 1]; new numerical evidence for this is presented. Estimates for the dimension of a global attractor and a corresponding inertial range are given for this regime. However, two more regimes can theoretically exist. In the second, which lies between the upper concave curve and a line, the depletion is insufficient to regularize solutions, so no more than Leray's weak solutions exist. In the third, which lies above this line, solutions are regular, but correspond to extreme initial conditions. The paper ends with a discussion on the possibility of transition between these regimes.
Resumo:
The issue of growth rate reduction of high speed mixing layer with convective Mach number is examined for similar and dissimilar gases using Reynolds averaged Navier-Stokes (RANS) methodology with k- turbulence model. It is observed that the growth rate predicted using RANS simulations closely matches with that predicted using model free simulations. Velocity profiles do not depend on the modelled value of Pr-t and Sc-t; while the temperature and species mass fraction distributions depend heavily on them. Although basic k- turbulence model could not capture the reduced growth rate for the mixing layer formed between similar gases, it predicts very well the reduced growth rate for the mixing layer for the dissimilar gases. It appears that density ratio changes caused by temperature changes for the dissimilar gases have profound effect on the growth rate reduction.
Resumo:
A new finite difference method for the discretization of the incompressible Navier-Stokes equations is presented. The scheme is constructed on a staggered-mesh grid system. The convection terms are discretized with a fifth-order-accurate upwind compact difference approximation, the viscous terms are discretized with a sixth-order symmetrical compact difference approximation, the continuity equation and the pressure gradient in the momentum equations are discretized with a fourth-order difference approximation on a cell-centered mesh. Time advancement uses a three-stage Runge-Kutta method. The Poisson equation for computing the pressure is solved with preconditioning. Accuracy analysis shows that the new method has high resolving efficiency. Validation of the method by computation of Taylor's vortex array is presented.
Resumo:
Based on the first-order upwind and second-order central type of finite volume( UFV and CFV) scheme, upwind and central type of perturbation finite volume ( UPFV and CPFV) schemes of the Navier-Stokes equations were developed. In PFV method, the mass fluxes of across the cell faces of the control volume (CV) were expanded into power series of the grid spacing and the coefficients of the power series were determined by means of the conservation equation itself. The UPFV and CPFV scheme respectively uses the same nodes and expressions as those of the normal first-order upwind and second-order central scheme, which is apt to programming. The results of numerical experiments about the flow in a lid-driven cavity and the problem of transport of a scalar quantity in a known velocity field show that compared to the first-order UFV and second-order CFV schemes, upwind PFV scheme is higher accuracy and resolution, especially better robustness. The numerical computation to flow in a lid-driven cavity shows that the under-relaxation factor can be arbitrarily selected ranging from 0.3 to 0. 8 and convergence perform excellent with Reynolds number variation from 102 to 104.
Resumo:
Modelling free-surface flow has very important applications in many engineering areas such as oil transportation and offshore structures. Current research focuses on the modelling of free surface flow in a tank by solving the Navier-Stokes equation. An unstructured finite volume method is used to discretize the governing equations. The free surface is tracked by dynamically adapting the mesh and making it always surface conforming. A mesh-smoothing scheme based on the spring analogy is also implemented to ensure mesh quality throughout the computaiton. Studies are performed on the sloshing response of a liquid in an elastic container subjected to various excitation frequencies. Further investigations are also carried out on the critical frequency that leads to large deformation of the tank walls. Another numerical simulation involves the free-surface flow past as submerged obstacle placed in the tank to show the flow separation and vortices. All these cases demonstrate the capability of this numerical method in modelling complicated practical problems.
Resumo:
20世纪60年代末期在边界层理论基础上发展起来的各种简化Navier-Stokes(N-S)方程(统称为扩散抛物化N-S方程)及其算法,较为彻底地解决了无黏流及黏流的相互干扰问题,并为高雷诺数大型复杂黏性流场的数值模拟开辟了新的途径.本文将系统地评述这一领域的主要成果,包括各种简化N-S模型的优缺点;数学奇性及正则化方法;代表性的数值解法以及最近几年的新进展.
Resumo:
对微尺度气体流动,Navier-Stokes方程和一阶速度滑移边界条件的结果与实验数据相比,在滑移区相互符合,在过渡领域则显著偏离,为改善Navier-Stokes方程在过渡领域的表现,有些研究者尝试引入二阶速度滑移边界条件,如Cercignani模型,Deissler模型和Beskok-Karniadakis模型.以微槽道气体流动为例,将Navier-Stokes方程在不同的二阶速度滑移模型下的结果与动理论的直接模拟Monte Carlo(DSMC)方法和信息保存(IP)方法以及实验数据进行比较.在所考察的3种具有代表性的二阶速度滑移模型中,Cercignani模型表现最好,其所给出的质量流率在Knudsen数为0.4时仍与DSMC和IP结果相符;然而,细致比较表明,Cercignani模型给出的物面滑移速度及其附近的速度分布在滑流区和过渡领域的分界处(Kn=0.1)已明显偏离DSMC和IP的结果.
Resumo:
在计算机发达的时代,高雷诺(Re)数绕流计算中有无必要使用简化NS方程组,本文讨论这个问题.主要内容如下:(1)高Re数绕流包含3种基本流动:所有方向对流占优流动、所有方向对流扩散竞争流动和部分方向对流占优部分方向对流扩散竞争流动(简称干扰剪切流动),3个基本流动的特征彼此不同且在流场中所占领域大小彼此相差悬殊,NS方程区域很小,它们的最简单控制方程组Euler、Navier-Stokes(NS)和扩散抛物化(DP)NS方程组的数学性质彼此不同,因此利用Euler-DPNS-NS方程组体系分析计算高Re数绕流流动就是一个合乎逻辑的选择,该法与利用单一NS方程组的常用方法可以彼此检验和补充.(2)流体之间以及流体与外界的动量、能量和质量交换,流态从层流到湍流的演化主要发生在干扰剪切流动中,干扰剪切流及其最简单控制方程--DPNS方程组具有基础意义;DPNS方程组笔者在1967年已提出.(3)诸简化NS方程组:DPNS、抛物化(P)NS、薄层(TL)NS、黏性层(VL)NS方程组的发展、相互关系,它们的历史贡献和今后的用途;它们的数学性质均为扩散抛物型,但它们包含的黏性项彼此有所不同;从流体力学角度来看,它们中只有DPNS方程组能够准确描述干扰剪切流动.提出把诸简化NS方程组统一为DPNS方程组的建议.(4)干扰剪切流--DPNS方程组与无干扰剪切流--边界层方程组之间的关系以及进一步研究干扰剪切流的意义.
Resumo:
对于高Re数流动计算,在通常二阶精度NS差分格式和网格数条件下,存在某些粘性项落入修正微分方程截断误差项的问题。这类NS方程组计算实际是计算某种简化NS方程组,而且重复计算误差物理粘性项既浪费机时和内存,误差积累又会对数值解产生不可预测的影响。避免上述缺陷的办法一个是提高NS差分格式的精度 ,另一个是丢掉可能落入截断误差项的物理粘性项,把NS方程组简化为广义NS方程组。广义NS计算避免了误差物理粘性项误差积累对数值解的不可知影响,又可节省内存和机时,对高Re数流体工程计算很有好处。利用广义NS方程组计算超声速绕前向和后向台阶流动的结果表明:广义NS方程组与NS方程组的数值结果很好相符。
Resumo:
借助于张量分析和张量计算,在贴体曲线坐标系下本文讨论了不同求解变量导致了粘性项个数上的重大差异和不同大小的计算量,并提出了便于粘性计算的最佳形式。文中借助于有限体积离散技术,通过引进两个对称辅助矩阵[A]和[B],使粘性项的计算量大大减少,这对完成三维粘性流的数值计算具有重要的指导意义。借助于上述方法,本文完成了某型真实进气道两种工况的三维粘性Navier-Stokes方程计算(即M∞=3.0,α=0°和设计工况M∞=2.65,α=0°),获得了满意的全场结果;对于M∞=2.65的设计工况,同实验数据作了比较,符合良好。由于本文的方法明显的减少了粘性项的计算量且节省了大量内存,以致于使三维流场的N-S求解能在普通微机上进行。