998 resultados para identificação e diagnóstico de falhas
Resumo:
The industries are getting more and more rigorous, when security is in question, no matter is to avoid financial damages due to accidents and low productivity, or when it s related to the environment protection. It was thinking about great world accidents around the world involving aircrafts and industrial process (nuclear, petrochemical and so on) that we decided to invest in systems that could detect fault and diagnosis (FDD) them. The FDD systems can avoid eventual fault helping man on the maintenance and exchange of defective equipments. Nowadays, the issues that involve detection, isolation, diagnose and the controlling of tolerance fault are gathering strength in the academic and industrial environment. It is based on this fact, in this work, we discuss the importance of techniques that can assist in the development of systems for Fault Detection and Diagnosis (FDD) and propose a hybrid method for FDD in dynamic systems. We present a brief history to contextualize the techniques used in working environments. The detection of fault in the proposed system is based on state observers in conjunction with other statistical techniques. The principal idea is to use the observer himself, in addition to serving as an analytical redundancy, in allowing the creation of a residue. This residue is used in FDD. A signature database assists in the identification of system faults, which based on the signatures derived from trend analysis of the residue signal and its difference, performs the classification of the faults based purely on a decision tree. This FDD system is tested and validated in two plants: a simulated plant with coupled tanks and didactic plant with industrial instrumentation. All collected results of those tests will be discussed
Resumo:
Muitas pesquisas estão sendo desenvolvidas buscando nos sistemas inteligentes soluções para diagnosticar falhas em máquinas elétricas. Estas falhas envolvem desde problemas elétricos, como curto-circuito numa das fases do estator, ate problemas mecânicos, como danos nos rolamentos. Dentre os sistemas inteligentes aplicados nesta área, destacam-se as redes neurais artificiais, os sistemas fuzzy, os algoritmos genéticos e os sistemas híbridos, como o neuro-fuzzy. Assim, o objetivo deste artigo é traçar um panorama geral sobre os trabalhos mais relevantes que se beneficiaram dos sistemas inteligentes nas diferentes etapas de análise e diagnóstico de falhas em motores elétricos, cuja principal contribuição está em disponibilizar diversos aspectos técnicos a fim de direcionar futuros trabalhos nesta área de aplicação.
Resumo:
In this work, we propose a two-stage algorithm for real-time fault detection and identification of industrial plants. Our proposal is based on the analysis of selected features using recursive density estimation and a new evolving classifier algorithm. More specifically, the proposed approach for the detection stage is based on the concept of density in the data space, which is not the same as probability density function, but is a very useful measure for abnormality/outliers detection. This density can be expressed by a Cauchy function and can be calculated recursively, which makes it memory and computational power efficient and, therefore, suitable for on-line applications. The identification/diagnosis stage is based on a self-developing (evolving) fuzzy rule-based classifier system proposed in this work, called AutoClass. An important property of AutoClass is that it can start learning from scratch". Not only do the fuzzy rules not need to be prespecified, but neither do the number of classes for AutoClass (the number may grow, with new class labels being added by the on-line learning process), in a fully unsupervised manner. In the event that an initial rule base exists, AutoClass can evolve/develop it further based on the newly arrived faulty state data. In order to validate our proposal, we present experimental results from a level control didactic process, where control and error signals are used as features for the fault detection and identification systems, but the approach is generic and the number of features can be significant due to the computationally lean methodology, since covariance or more complex calculations, as well as storage of old data, are not required. The obtained results are significantly better than the traditional approaches used for comparison
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Dissertação para obtenção do Grau de Mestre em Mestrado Integrado em Engenharia Electrotécnica e de Computadores
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
A automatização dos processos industriais, onde os acionamentos eletromecânicos representam a sua principal componente, levou à necessidade destes equipamentos funcionarem de forma ininterrupta. No entanto, nenhum acionamento está isento da ocorrência de uma falha, ou de uma combinação de falhas simultâneas, resultando num deficiente funcionamento ou mesmo na sua paragem. Neste contexto, a máquina de indução hexafásica apresenta-se especialmente indicada, pelas vantagens que o aumento do número de fases possibilita, para sistemas que requerem uma elevada disponibilidade. O trabalho apresentado nesta dissertação tem como objetivo principal o estudo da deteção e diagnóstico de falhas num acionamento baseado em máquina de indução hexafásica. A metodologia adotada no trabalho baseia-se no desenvolvimento de um modelo matemático adequado à simulação e análise do funcionamento da máquina hexafásica, em modo normal e com falha, e no desenvolvimento de estratégias/métodos de deteção e diagnóstico de falhas, quer para a máquina de indução hexafásica quer para o respetivo inversor. Os métodos propostos são baseados na análise de padrões das correntes de fases. Deste trabalho resultou ainda a implementação de um protótipo laboratorial de acionamento hexafásico. Os resultados obtidos por simulação e provenientes dos ensaios experimentais permitem validar o modelo proposto para a máquina de indução hexafásica, em modo normal e com falha, assim como os métodos de deteção e diagnóstico de falhas propostos. É ainda analisada a capacidade de funcionamento do acionamento desenvolvido em modo de falha
Resumo:
Os motores trifásicos de indução são os mais utilizados na indústria a nível mundial essencialmente devido à sua versatilidade, fiabilidade e baixo custo. Apesar da alta fiabilidade destes motores, o decorrer do tempo acaba por inevitavelmente levar a um desgaste que se poderá tornar excessivo quando negligenciado, levando assim o motor à situação de avaria. De forma a contornar este problema que resulta em gastos energéticos e prejuízos financeiros para as empresas, consequentes da paragem dos seus sistemas produtivos, as empresas recorrem à prática da manutenção preditiva. Através de uma monitorização contínua dos parâmetros de funcionamento, são realizados sucessivos diagnósticos não invasivos aos sistemas produtivos, nomeadamente motores, prevenindo deste modo o surgimento de falhas e avarias, identificando a origem do problema. A presente dissertação foi elaborada no âmbito da realização de um estágio numa empresa do setor eletromecânico. A referida empresa comercializa equipamentos industriais, dentro dos quais motores elétricos, entre outros componentes de acionamentos eletromecânicos, prestando serviços de manutenção dos mesmos. Este trabalho visou uma reformulação de um projeto de uma bancada para realização de testes de capacidade dos motores. A bancada de ensaio, além de reformulada, ganhou novas funcionalidades. Foi desenvolvido um sistema de análise e diagnóstico de falhas mecânicas em motores elétricos, através da inclusão de sensores adaptados para monitorização dos parâmetros de funcionamento. A escolha das técnicas utilizadas teve por base uma análise dos modos de falha dos elementos do motor. Para facilitar o trabalho do operador, foi incluída uma consola com botões de navegação e um mostrador em LCD para visualização do menu. Foram também comparados dois sistemas diferentes para simulação de carga, ou seja, de teste à capacidade dos motores. No âmbito desta dissertação está a ser preparado um artigo e uma apresentação para o 13º CNM (Congresso Nacional de Manutenção da APMI).
Resumo:
Equipment maintenance is the major cost factor in industrial plants, it is very important the development of fault predict techniques. Three-phase induction motors are key electrical equipments used in industrial applications mainly because presents low cost and large robustness, however, it isn t protected from other fault types such as shorted winding and broken bars. Several acquisition ways, processing and signal analysis are applied to improve its diagnosis. More efficient techniques use current sensors and its signature analysis. In this dissertation, starting of these sensors, it is to make signal analysis through Park s vector that provides a good visualization capability. Faults data acquisition is an arduous task; in this way, it is developed a methodology for data base construction. Park s transformer is applied into stationary reference for machine modeling of the machine s differential equations solution. Faults detection needs a detailed analysis of variables and its influences that becomes the diagnosis more complex. The tasks of pattern recognition allow that systems are automatically generated, based in patterns and data concepts, in the majority cases undetectable for specialists, helping decision tasks. Classifiers algorithms with diverse learning paradigms: k-Neighborhood, Neural Networks, Decision Trees and Naïves Bayes are used to patterns recognition of machines faults. Multi-classifier systems are used to improve classification errors. It inspected the algorithms homogeneous: Bagging and Boosting and heterogeneous: Vote, Stacking and Stacking C. Results present the effectiveness of constructed model to faults modeling, such as the possibility of using multi-classifiers algorithm on faults classification
Resumo:
In a real process, all used resources, whether physical or developed in software, are subject to interruptions or operational commitments. However, in situations in which operate critical systems, any kind of problem may bring big consequences. Knowing this, this paper aims to develop a system capable to detect the presence and indicate the types of failures that may occur in a process. For implementing and testing the proposed methodology, a coupled tank system was used as a study model case. The system should be developed to generate a set of signals that notify the process operator and that may be post-processed, enabling changes in control strategy or control parameters. Due to the damage risks involved with sensors, actuators and amplifiers of the real plant, the data set of the faults will be computationally generated and the results collected from numerical simulations of the process model. The system will be composed by structures with Artificial Neural Networks, trained in offline mode using Matlab®
Resumo:
Induction motors are one of the most important equipment of modern industry. However, in many situations, are subject to inadequate conditions as high temperatures and pressures, load variations and constant vibrations, for example. Such conditions, leaving them more susceptible to failures, either external or internal in nature, unwanted in the industrial process. In this context, predictive maintenance plays an important role, where the detection and diagnosis of faults in a timely manner enables the increase of time of the engine and the possibiity of reducing costs, caused mainly by stopping the production and corrective maintenance the motor itself. In this juncture, this work proposes the design of a system that is able to detect and diagnose faults in induction motors, from the collection of electrical line voltage and current, and also the measurement of engine speed. This information will use as input to a fuzzy inference system based on rules that find and classify a failure from the variation of thess quantities
Resumo:
Desde a década de 1930, com o crescimento da malha urbana do município de Rio Claro, a Floresta Estadual “Edmundo Navarro de Andrade” (FEENA), sofre vários tipos de pressões sobre seu patrimônio. O presente trabalho traz uma pesquisa realizada e em dois cursos d’água localizados na faixa oeste da Floresta Estadual “Edmundo Navarro de Andrade”, com a finalidade de identificar e diagnosticar alguns impactos ambientais negativos que ocorrem nestes cursos e quais os efeitos causados por estes impactos nos ambientes formados pelo córrego Lavapés e pelo Ribeirão Claro, bem como, apontar dados sobre a percepção do visitante da Unidade de Conservação frente a esta situação ambiental referentes à deterioração de um importante patrimônio paisagístico natural e cultural
Resumo:
The growth and expansion in auto parts market are directly related to the ability of a company to innovate and gain new customers, increasing its portfolio of customers and products. For this purpose the process of prospecting for new business has become a key process in companies seeking this goal, which requires teams and structures dedicated to it. Besides counting on available resources to carry out prospecting, it is necessary to properly manage the process as a whole, whose main result is a business proposal, which may lead to closer relations with the potential client and the activation of a new business. Process failures and difficulties to formulate a commercial proposal lead to documents produced without the quality needed that makes it harder to obtain new business. The objective of this study is to evaluate the process of new businesses quotation in the auto parts industry and indicate opportunities for improving this process. This goal is achieved by mapping the current process, from the diagnosis of problems and the indication of tools that can prevent or minimize the problems diagnosed. The information supporting this study were obtained by the bibliographical research, participant observation of the process, unstructured interviews with some of the involved people in the process and prospecting tools that can improve it. It results the mapping of new business quotation process, the points indicated as failures and difficulties in the process and the appointment of project management tools that can bring improvements to the new business proposals and pointing the moment for your application in the process
Resumo:
The detection and diagnosis of faults, ie., find out how , where and why failures occur is an important area of study since man came to be replaced by machines. However, no technique studied to date can solve definitively the problem. Differences in dynamic systems, whether linear, nonlinear, variant or invariant in time, with physical or analytical redundancy, hamper research in order to obtain a unique solution . In this paper, a technique for fault detection and diagnosis (FDD) will be presented in dynamic systems using state observers in conjunction with other tools in order to create a hybrid FDD. A modified state observer is used to create a residue that allows also the detection and diagnosis of faults. A bank of faults signatures will be created using statistical tools and finally an approach using mean squared error ( MSE ) will assist in the study of the behavior of fault diagnosis even in the presence of noise . This methodology is then applied to an educational plant with coupled tanks and other with industrial instrumentation to validate the system.
Tolerância a falhas com base em comutação de controladores – implementação em autómatos programáveis
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Electrotécnica e de Computadores