9 resultados para ichnofossils
Resumo:
In the neighborhood of the city of Boqueirão do Leão (State of Rio Grande do Sul, Brazil) a set of three big-sized tunnels has been found. One of the tunnels is only partially filled with sand and accessible along its entire length. It is horizontal, slightly sinuous, 36 m long, up to 4.2 m wide and up to 2.0 m high. The surface morphology of the walls is composed of anthropogenic marks, speleothems, black incrustations and traces like digging scratches and smoothed surfaces. The 2nd tunnel has its entrance blocked by sand and sandstone cobbles, but the end of the tunnel is only partially clogged and therefore accessible. This accessible portion is 12 m long, 3 m wide and 1.5 m high. The 3rd tunnel is completely filled and collapsed and is nowadays only indicated by concave roof features at its end. The general features of the tunnel system and the analysis of the surface morphology of the walls of the accessible portions permit to conclude that the tunnels were produced by ground sloths of the Cenozoic South American megafauna. The size of the tunnels suggests that its excavation was gradually carried out by successive generations of sloth herds, and not by a single individual animal. The primary function of the tunnels probably was not protection from predators, which had easy access to structures of this size, but to shelter during a drier climate. However, it is not yet possible to relate the tunnels to a specific ground sloth genus, a task that depends on the discovery of better-preserved tunnel systems. © 2013 by the Sociedade Brasileira de Paleontologia.
Resumo:
Livingston Island, the second island of South Shetland Island, constains Mesozoic-Cenozoic basement, Mesozoic-Cenozoic volcanic sequences, plutonic intrusions and post-subduction volcanic rocks, which document the history and evolution of an important part of the South Shetland Islands magmatic arc. The sedimentary sequence is named the Miers Bluff Formation (MBF) and is interpreted as turbidite since the first geological study on South Shetland Islands, and is interpreted as turbidite. It base and top are not exposed, but a thickness of more than 3000m has been suggested and seems plausible. The turbidite is overlain by Mid - Cretaceous volcanic rocks and intruded by Eocene tonalites. The age of the Miers Bluff Formation is poorly constrained Late Carboniferous -Early Triassic. Sedimentary Environment, tectonic setting and forming age of sedimentary rocks of the Miers Bluff Formation were discussed by means of the methods of sedimentology, petrography and geochemistry, combinig with the study of trace fossils and microfossil plants. The following conclusions are obstained. A sedimentary geological section of Johnsons Dock is made by outside measuring and watching, and then according the section, the geological map near the Spanish Antarctic station was mapped. Four pebbly mudstone layers are first distinguished, which thickness is about 10m. The pebbly mudstone is the typical rock of debris flow, and the depostional environment of pebbly mudstone may be the channel of mid fan of submarine fan. The sedimentsry structural characteristics and size analysis of sandstones show the typical sedimentary feature of turbidity flow and the Miers Bluff Formation is a deep-water turbidite (include some gravity-flow sediments). The materials of palaeocurrents suggest the continental slope dip to southeast, and indicate the provenance of turbidity sediment in the northwest area. By facies analysis, six main facies which include seven subfacies were recognized, which are formed in mid-fan and lower-fan of submarine, meanwhile, the sedimentary features of each facies and subfacies are summarized. The study of clastic composition, major elements, trace elements and rare earth elements indicates the forming setting of the Miers Bluff Formaton is active continental margin and continental island arc and the provenance is dissected magmatic arc which main composition is felsic gneiss. Many trace fossils of the whole succession were found in the turbidites of the Miers Bluff Formation. All these trace fossils are deep sea ichnofossils. There are fifteen ichnogenus, sixteen ichnospecies. Moreover, a new trace fossil was found and a new ichnogenus and new ichnospecies was proposed - Paleaichnus antarctics ichnogen, et ichnosp, nov.. Except the new ichnogenus and ichnospecies, others had been found in deep-sea flysch turbidites. Some are in mudstone and are preserved in the cast convex of overlying sandstone sole, they formed before turbidity flows occurred and belong to the high-different Graphoglyptida of fiysch mudstone. Others as Fucusopsis and Neonereites are preserved in sandstones and stand for trace assemblages after turbidity sedimentation. These trace fossils are typical members of abyssal "Nereites" ichnofacies, and provide for the depositional environment of the Miers Bluff Formation. Fairly diverse microfossil plants have been recovered from the Miers Bluff Formation, Livingston Island, including spores, pollen, acritarchs, wood fragments and cuticles. Containing a total of about 45 species (forms) of miospores, the palynofiora is quantitatively characterized by the dominance of non-striate bisaccate pollen, but spores of pteridophytes and pollen of gymnosperms are proportionate in diversity. It is somewhat comparable to the subzone C+D of the Alisporites zone of Antarctica, and the upper Craterisporites rotundus zone and the lower Polycingulatisporites crenulatus zone of Australia, suggesting a Late Triassic (possibly Norian-Rhaetian) age, as also evidenced by the sporadic occurrence of Aratrisporites and probable Classopollis as well as the complete absence of bisaccate Striatiti. The parent vegetation and paleoclimate are preliminarily deduced. At last, the paper prooses the provenance of sedimentary rocks of the Miers Bluff Formation locates in the east part to the southern Chile(or Southern South American). In the Triassic period, contrasting with New Zealand, Australia and South American of the Pacific margin of Gondwanaland, the Miers Bluff Formation is deposited in the fore-arc basin or back-arc basin of magmatic arc.
Resumo:
Microbial ichnofossils in volcanic rocks provide a significant record of subsurface microbes and potentially extraterrestrial biosignatures. Here, the textures, mineralogy, and geochemistry of two continental basaltic hydrovolcanic deposits - Reed Rocks and Black Hills - in the Fort Rock Volcanic Field (FRVF) are investigated. Methods include petrographic microscopy, micro and powder X-ray diffraction, SEM/BSE/EDF imaging, energy dispersive spectroscopy, stable isotopes, and X-ray fluorescence. Petrographic analysis revealed granular and tubular textures with biogenic morphologies that include terminal enlargements, septate divisions, branching forms, spiral filaments, and ovoid bodies resembling endolithic microborings described in ocean basalts. They display evidence of behaviour and a geologic context expressing their relative age and syngenicity. Differences in abiotic alteration and the abundance/morphotype assemblage of putative microborings between the sites indicate that water/rock ratio, fluid composition and flux, temperature and secondary phase formation are influences on microboring formation. This study is the first report of reputed endolithic microborings in basalts erupted in a continental lacustrine setting.
Resumo:
ICHNOFOSSILS (PALEO-BURROWS and CROTOVINES) ATTRIBUTED TO EXTINCT MAMMALS IN SOUTHEASTERN and SOUTH BRAZIL. This work presents information regarding tunnels which are attributed to large extinct mammals. These structures can be found in several places in southeastern and southern Brazil, in different types of substrate, occurring as hollow structures (paleo-burrows) or those filled with sediments (crotovines). The dimensions and osteoderm and claw imprints found along the internal walls of the paleo-burrow found on aluvial fan deposits near the town of Cristal (Rio Grande do Sul State) suggest that a dasypodid xenarthran might have dug this structure. Comparison with similar structures found in Argentina can provide more detailed information regarding the paleoecology and biostratigraphy of the organisms that made these burrows.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We describe the occurrence of non-marine bivalves in exposures of the Middle Permian (Capitanian) Brenton Loch Formation on the southern shore of Choiseul Sound, East Falklands. The bivalves are associated with ichnofossils and were collected from a bed in the upper part of the formation, within a 25 cm thick interval of dark siltstones and mudstones with planar lamination, overlain by massive sandstones. The shells are articulated, with the valves either splayed open or closed. At the top of the succession, mudstone beds nearly 1.5 m above the bivalve-bearing layers yielded well-preserved Glossopteris sp. cf. G. communis leaf fossils. The closed articulated condition of some shells indicates preservation under high sedimentation rates with low residence time of bioclasts at the sediment/water interface. However, the presence of specimens with splayed shells is usually correlated to the slow decay of the shell ligament in oxygen-deficient bottom waters. The presence of complete carbonized leaves of Glossopteris associated with the bivalve-bearing levels also suggests a possibly dysoxic-anoxic bottom environment. Overall, our data suggest that the bivalves were preserved by abrupt burial, possibly by distal sediment flows into a Brenton Loch lake, and may represent autochthonous to parautochthonous fossil accumulations. The shells resemble those of anthracosiids and are herein assigned to Palaeanodonta sp. aff. P. dubia, a species also found in the Permian succession of the Karoo Basin, South Africa. Our results confirm that (a) the true distributions in space and time of all Permian non-marine (freshwater) bivalves are not yet well known, and (b) there is no evidence for marine conditions in the upper part of the Brenton Loch Formation.
Resumo:
Precambrian rocks comprise nearly one-quarter of the surface of Brazil and range from Paleoarchean (ca. 3.6 Ga) to the latest Ediacaran (0.542 Ga) in age. Except for controversial phosphatized 'embryo-like' microfossils like those from the lower Ediacaran Doushantuo Formation, China and complex rangeomorphs, Brazilian research has revealed all major categories of Precambrian life forms described elsewhere - microbialites, biomarkers, silicified microfossils, palynomorphs, vase-shaped microfossils, macroalgae, metazoans, vendobionts and ichnofossils - but the paleobiological significance of this record has been little explored. At least four occurrences of these fossils offer promise for increased understanding of the following aspects of Precambrian biospheric evolution: (i) the relationship of microbialites in 2.1-2.4 Ga old carbonates of the Minas Supergroup in the Quadrilatero Ferrifero, Minas Gerais (the oldest Brazilian fossils) to the development of the early oxygenic atmosphere and penecontemporaneous global tectonic and climatic events; (ii) the evolutionary and biostratigraphic significance of Mesoproterozoic to Ediacaran organic-walled microfossils in central-western Brazil; (iii) diversity and paleoecological significance of vase-shaped heterotrophic protistan microfossils in the Urucum Formation (Jacadigo Group) and possibly the Bocaina Formation (Corumba Group), of Mato Grosso do Sul; and (iv) insights into the record of skeletogenesis and paleoecology of latest Ediacaran metazoans as represented by the abundant organic carapaces of Corumbella and calcareous shells of the index fossil Cloudina, of the Corumba Group, Mato Grosso do Sul. Analysis of the Brazilian Precambrian fossil record thus holds great potential for augmenting paleobiological knowledge of this crucial period on Earth and for developing more robust hypotheses regarding possible origins and evolutionary pathways of biospheres on other planets. Received 26 February 2012, accepted 17 May 2012, first published online 18 June 2012
Resumo:
When examined in their sedimentologic and stratigraphic context, ichnofabrics and component ichnofossils can help decipher paleoceanography and sea-level histories from marine deposits (Savrda, 1995, http://www.jstor.org/stable/3515095). Thus far, applications of ichnology in paleoceanographic investigations have been restricted to slowly deposited, predominantly biogenic sediments and/or strata deposited in oxygen-deficient, tectonically active basins. Moreover, ichnologic applications in sequence stratigraphic studies largely have been restricted to strata deposited in relatively shallow-water shelf or foreland basin settings. The limits of previous studies provided impetus for detailed postcruise examination of Quaternary deposits recovered at Ocean Drilling Program (ODP) Site 1073 on the New Jersey margin. These deposits provide the opportunity to assess the sedimentary and ichnofabric record of glacio-eustatic cycles in a passive continental slope setting characterized by relatively rapid accumulation of siliciclastic sediments in an area not far removed from the Laurentide ice margin. The primary purpose of this data report is to present basic sedimentologic and ichnologic observations made at the decimeter scale throughout the Quaternary sequence from Site 1073. Data analysis and interpretation in the context of climate and sea-level histories, as inferred from oxygen isotopic, palynologic, and seismic studies, are ongoing and will be presented in subsequent papers prepared for open literature (e.g., Savrda et al., in press).
Resumo:
ICHNOFOSSILS (PALEO-BURROWS and CROTOVINES) ATTRIBUTED TO EXTINCT MAMMALS IN SOUTHEASTERN and SOUTH BRAZIL. This work presents information regarding tunnels which are attributed to large extinct mammals. These structures can be found in several places in southeastern and southern Brazil, in different types of substrate, occurring as hollow structures (paleo-burrows) or those filled with sediments (crotovines). The dimensions and osteoderm and claw imprints found along the internal walls of the paleo-burrow found on aluvial fan deposits near the town of Cristal (Rio Grande do Sul State) suggest that a dasypodid xenarthran might have dug this structure. Comparison with similar structures found in Argentina can provide more detailed information regarding the paleoecology and biostratigraphy of the organisms that made these burrows.